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Abstract. Behavioral and theoretical studies have shown that during
joint action in an interpersonal skilled activity, like carrying an object
collaboratively, anticipation is required to further improve the precision
in the realization of the task. We model this task as a dual cart pole
setup, and we provide a computational basis of how this anticipation
can be realized at different levels: anticipating errors originating from the
agent’s body control, errors related to the global task and errors derived
from the anticipation of the other’s actions. We model computationally
the control loops of the agents as an interplay of feedback and feedforward
components and we base the latter on previous research on the cerebellar
circuit network. Our results confirm experimentally that anticipating the
error in the task including inputs extracted from the behavior of the
other, further improves precision in the realization.

Keywords: Social sensorimotor contingencies · Anticipation · Cerebel-
lar circuit · Forward/Feedback control · Dual cart pole setup

1 Introduction

The realization of a skilled activity requires anticipation possibly realized as an
interplay of feedback and feedforward components [14]. Anticipation is necessary
because of the delays of the sensory feedback (up to 100 milliseconds in the case
of the visual modality): to be able to guide the initial part of a movement of an
action in a skilled task, sensory feedback is still not available at that moment
(thus the need for feedforward control). These delays can increase even further
in the case of an interpersonal coordination task [14], where the consequences of
our actions can have an effect on the other. Being able to attend, anticipate and
adapt to the other’s actions are key factors in the coordination of joint action [5].
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Consider the example of two persons that need to carry together a table
with objects on top to a target position: they need to maintain the table in an
horizontal position while maintaining balance when moving and being able to
anticipate the other’s movements not to be uncoordinated.

In the following we contribute to the modelling of the presented task by
means of two self-balancing cart pole agents that are linked by an object of
variable elasticity1 (see Fig. 1).

Fig. 1. Setup, control neural network and architecture. A. Dual cart pole robotic setup
with two cart-pole agents facing each other and attached by an elastic chain. The agents
have the goal of moving together to target positions (1 and 2) which alternate in time. B.
Cerebellar circuit based on an adaptive filter neural network [4]. C. Feedfoward feedback
architecture. The cascade PID feedback controller is shown as the main pipeline with
the two feedforward components based on the network shown in B.

We also contribute to the computational modelling of how the task is imple-
mented in the brain. Following [14] we model the control loops of the agents
as nested feedback/feedforward loops that relate to errors originating from: the
control of the agent body, from task related errors and from predicting the other.
The anticipatory components are implemented based on the cerebellar circuitry
presented in [4].

We propose a computational and neurobiologically plausible substrate for
joint action. We provide as well experimental results of the benefits of mon-
itoring the other agent to improve coordination, just as hypothesised in [12]
1 The simulation has been implemented by the authors in python with pybox2d and

can be download from https://github.com/santmarti/PythonRobot2DSim.

https://github.com/santmarti/PythonRobot2DSim
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where monitoring and prediction are identified as the minimal components of an
architecture supporting joint action. We address the question of what are the
mechanisms supporting precise temporal coordination of actions [9], by assess-
ing the additional precision achieved in the presented interpersonal coordination
task by modelling and quantifying the contribution of the anticipatory loops
related to the prediction of actions of others.

When performing a multi-agent sensorimotor coordination task (as the one
just presented) different errors have to be taken into account:

1. Errors derived from the agent’s own state: optimizing the posture for the
realization of the joint action

2. Task related errors: e.g., if a furniture has to be carried maintaining its hori-
zontal position (so that objects on top don’t fall).

3. Resulting errors of the predictions involving other’s actions: so that others
intentions are anticipated or compensated as quickly as possible.

We start coupling the two agents with one feedback loop each. This first
level translates task goals (target position of the agents) into a velocity and the
feedback loops bring velocity and angle of the agents to zero, so that posture is
controlled, and the own errors can be minimized (1). Given the parametrization
of the simulation, the task can be performed using only feedback, but collisions
and interactions among the agents affect performance severely. We then add an
adaptive feedforward loop relating to the realization of the task which antic-
ipates task related errors (2) as the one derived from under/overshooting the
target position due to control delays. We finally show experimentally that the
anticipation loop based on predicting the actions of the other (3), extracted from
its own actions and the distance to the other, further improves the efficiency and
precision in the realization of the task.

2 Methods

2.1 Setup

For the modelling of the task (carrying together an object to a desired loca-
tion), we depart from the cart pole (inverted pendulum) setup often used as an
approximation of posture and well known in the machine learning community.
We implement a cart pole agent using library pybox2d (see github link in the
intro for source code). The agent has one degree of freedom in its wheel, imple-
mented as the so called revolution joint (joint of pybox2d library, basically a
motor with torque). Each agent has a distance sensor in the upper part of his
body which is implemented as a ray cast in the physics library (from a point
and a direction vector in the body, the distance to the first colliding body is
returned).

The setup is then constituted by two cart pole agents facing each other and
attached by an elastic chain implemented as sequence of spheres linked by a
distance joint.
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2.2 Task

The task is composed of two goals: a local and a global one. Each agent has the
personal goal of balancing while performing the global task. The chosen global
task is an adaptation of a position reference tracking task for two agents (see
Fig. 1). The target position of both agents switches from two different positions
every ten seconds (see target positions in Fig. 1A). Both agents, each equipped
with a different controller, have the common goal of reaching a target position,
which is communicated as an additional input to the system, eliminating the
problem of having to attend to it.

The agents need to collaborate if they want to perform the task efficiently
and without losing balance as the chain causes indirect instabilities. The task is
a collaborative motor task with multiples sources of error.

2.3 Architectures

The behavior of both agents is driven by a control scheme composed of coupled
feedback and feedforward controllers (see Fig. 1). The feedback controller is in
charge of adjusting the velocity and the angle of the agent according to a desired
target position based on sensory feedback. On the other hand, the feedforward
controllers are in charge of issuing sensory predictions (following the counter-
factual predictive control, CFPC scheme [3]) with the goal to minimize a given
error by acting in anticipation.

The feedback controller is implemented as a cascade PID composed by: a
module setting a desired angular position (tgtθ) that minimizes the error in
velocity, and, a module generating a motor response (u) modifying the state of
the plant to minimize the angular error and consequently the error in velocity
(see Fig. 1C). A desired position is achieved by setting a desired velocity (tgtv)
as the difference between target (tgtp) and current position (p).

Each feedforward controller module is implemented as a neural network con-
sistent with cerebellar physiology and anatomy [1] (Fig. 1B), that expands an
input y(t) into a set of 100 gaussian bases (g). The output (z) of a single adaptive
module is obtained as a weighted linear combination the bases vectors p. The
weight vector (W ) is updated according to a variation of the Widrow-Hoff rule
such that: wj(t) = βe(t)pj(t), where β (=10) is the learning rate, δ (=200 ms)
accounts for the anticipatory delay and e is the error function. Importantly
the two feedforward modules are identical in the implementation but differ in
the nature of the error they minimize. FFWg acquires a prediction useful to
minimize a goal related error (i.e. position) associated with a change in target
position. As such the input is defined as yffwg =

∫
tgtp and its error signal is

defined as effwg = ptgt−p. Finally, the output (zffwg), representing a prediction
of the error in position, is linearly integrated with the input to the descending
reactive module Cv and processed as an anticipatory change in target velocity.

Differently, FFWo acquires a prediction useful to minimize an error in
velocity elicited by the distance to the other agent. Its input is defined as
yffwo = H(xprox), with y = 1 for xprox > 0.4 and y = 0 otherwise, while
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its error signal is defined as effwo = vtgt − v. Finally, the output (zffwo), rep-
resenting a prediction of the error in velocity, is linearly integrated with the
current error in velocity and further transformed into a desired angular position
by Cv.

3 Results

We run experiments where the agents have to minimize the displacement from a
target goal position in two conditions: first, by learning to anticipate the target
goal related error (ffGoal, ffG for short, condition in Fig. 3C legend, where only
the feedforward goal component is activated) and second, by learning to antic-
ipate simultaneously the goal related and the other related error (ffMixed, ffM
for short, condition in Fig. 3C legend where both feedforward components are
activated).

We start checking the performance of the agents engaged in the collabora-
tive sensory-motor task by describing the performance of the feedback controller
alone (Fig. 2A). Here, the error in position (red shaded) is due to the control
latencies introduced by the physical properties of the plant, responsible for delays
and overshooting, and by the interaction of the two agents introducing oscilla-
tions when colliding. A minimization of the first source of error is achieved by
enabling the FFWg module. After a number of repetitions a feedforward signal
encoding a position error prediction (Fig. 2B) is issued with enough anticipation
to trigger a corrective movement before the actual error is perceived (Fig. 3A, B
black solid line). At the end of the experimental session the original error in posi-
tion is reduced by approximately 40% (Fig. 3C, black solid and dashed lines).

Importantly, an ulterior increase in performance is achieved by enabling the
FFWo. This module learns over time to issue an anticipatory prediction of the
velocity error introduced by the collision with the partner in response to its
proximity (Fig. 2C). As a result, the agents progressively increase their ability

Fig. 2. Feedback and feedforward results. A. Results of the feedback controller alone
for one of the agents. The curve shows the position of one agent with respect to the
target reference which switches position every ten seconds. B. Predictive response signal
of the first feedforward component FFWg at the moment where the reference target
changes. It can be observed that a predictive anticipatory signal is generated after 8
trials. C. Response signal of the second feedforward component FFWo component that
issues a response predictive signal (green solid line) every time the proximity sensor is
activated (green shaded area). (Color figure online)
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Fig. 3. Comparison between experimental conditions. A. Agent one results for the
two conditions denoted ffG (black solid line) and ffM (green solid line), referring to
the goal and mixed conditions (ffG and ffM respectively). B. Agent two results for
the two conditions as in A. C. Learning curves of both agents for both conditions:
ffG (only goal feedforward component activated) and ffm (both goal and proximity
feedforward components activated). Legend refers to: agent one/ffG condition (a1-ffG),
agent one/ffM condition (a1-ffM), and similarly for agent two. (Color figure online)

to react to the collision before it is perceived (see Fig. 3A, B green solid lines).
Learning to predict the effects of the action of the other has a beneficial effect
on performance by reducing the initial error by a total of 55% (15% addition to
FFWg alone, see Fig. 3C).

4 Discussion

We study the computational basis of sensorimotor contingencies (SMCs) involved
in the realization of joint action during a skilled activity. We characterize social
SMCs in a truly collaborative sensorimotor coordination task. The task itself
(carrying something together to a target) has been proposed as a prototypical
example of collaborative task with a common goal 90 years ago by Allport in his
seminal book “social psychology” as credited in [9]. We have modeled the task by
two cart pole agents linked by an object. We used different types of objects to be
able to control levels of physical linking. Available objects in the implementation
are: (1) two rigid bars linked by a spring of variable elasticity and (2) a chain
made up of spheres linked by a join with variable elasticity. This feature is not
exploited in the current paper and we leave the study of the effects of varying
elasticity of the object to the agent coordination for future work. For the current
experiments we have chosen to use option (2) as the problem of balancing while
moving together becomes more challenging. We observed that when using a rigid
bar the two agents became more linked and balance easily.

In the following we place our research in the context of related social cognition
literature. We go beyond the approach of the “perceptual crossing” task where
social sensorimotor contingencies can only be characterized by the dynamics of
the interaction when the two agents cross [2] and where no joint task exists
truly, only the derived goal of distinguishing the other. The “perceptual crossing
tasks” is more related to the distinction of self and other.
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In [13] the fact that adaptation is driven linearly or proportionally to an error
is discussed, but the proposed Bayesian model that processes the relevance of the
error is applied to a single source of error. Here different sources of error are taken
simultaneously into account and being applied to a social collaborative task.

As discussed in [14], a social joint task that we address here deals in reality
with a more complex types of anticipation. Fully predicting the consequences of
actions may need to include an internal model (feedforward/anticipatory compo-
nent) of the other. We don’t deal with this fact in the paper as each agent only
considers the subjective distance to the other and does not take into account
any additional aspect as: weight estimation, strength assessment or even phys-
iological state of the other. We leave this aspect as future work and we foresee
interesting experiments that could be done: interchange partner in the task and
reassess convergence of efficiency; make an agent more active than the other
and look at coupling and turn taking behaviours. In fact, in this paper, we are
interested in the pure perceptual anticipatory nature of a joint coordination task
without considering communication aspects between agents; as we did in [6] for
maximizing probability presence estimation within a group in occluded environ-
ments; or like they do in [11] for coordinating autonomous crossing vehicles in
junctions.

The proposed architecture could be the basis to model and explain the neuro-
physiological basis of anticipatory aspects involved in social interaction, based on
the cerebellar circuitry. It can also shed light into explaining experimental data
of behavioral experiments like the lifting and balancing task presented in [7].

5 Conclusion

Wolpert et al. [14], investigate theoretically the role of the interplay of feedback/
feedforward components in social interaction. We propose and test experimen-
tally a computational biologically plausible architecture for joint action support-
ing anticipation and monitoring of self, other and task related errors. We base the
computational modeling of adaptive loops in the cerebellar circuitry [4] which
has been proposed as a plausible substrate of the neurophysiological cerebellar
circuit and has been identified to be crucial for anticipatory action [1], and its
malfunctions and deficits have also been pointing to possible causal factors of
complex disorders like autism [8,10].
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