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From motor to visually guided
bimanual affordance learning

Martı́ Sánchez-Fibla1 , Sébastien Forestier2, Clément Moulin-Frier1,
Jordi-Ysard Puigbò3 and Paul FMJ Verschure3,4

Abstract
The mechanisms of how the brain orchestrates multi-limb joint action have yet to be elucidated and few computational
sensorimotor (SM) learning approaches have dealt with the problem of acquiring bimanual affordances. We propose a
series of bidirectional (forward/inverse) SM maps and its associated learning processes that generalize from uni- to
bimanual interaction (and affordances) naturally, reinforcing the motor equivalence property. The SM maps range from a
SM nature to a solely sensory one: full body control, delta SM control (through small action changes), delta sensory co-
variation (how body-related perceptual cues covariate with object-related ones). We make several contributions on
how these SM maps are learned: (1) Context and Behavior-Based Babbling: generalizing goal babbling to the interleaving of
absolute and local goals including guidance of reflexive behaviors; (2) Event-Based Learning: learning steps are driven by
visual, haptic events; and (3) Affordance Gradients: the vectorial field gradients in which an object can be manipulated. Our
modeling of bimanual affordances is in line with current robotic research in forward visuomotor mappings and visual ser-
voing, enforces the motor equivalence property, and is also consistent with neurophysiological findings like the multipli-
cative encoding scheme.
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1. Introduction

The mechanisms of how the brain orchestrates multi-
limb joint action to interact with a dynamic environ-
ment have yet to be elucidated (Takiyama & Sakai,
2016). There is evidence by Corbetta and Thelen (1996)
that bimanual interactions precede unimanual during
development: the newborn starts by using synchronous
bimanual control movements (of 1 degree of freedom
(DOF)) which may have large perceptual sensory
effects: visual (i.e. several visual perceptual cues reduc-
ing in scale and rotating synchronously after a box has
been hit) and haptic (hundreds of tactile sensor activa-
tions). Affordances, after Gibson (1986), are the cate-
gorizations of such goal-relevant properties of objects.
The learning substrate of multi-limb affordances has
not been well addressed in the computational sensori-
motor (SM) and affordance learning (AL) research:
they are only mentioned in Zech et al. (2017) suggesting
to be derived from ‘‘chaining’’ or combination of other
simpler affordances and do not appear in Thill,

Caligiore, Borghi, Ziemke, and Baldassarre (2013).
Early synchronized bimanual movements can also
enable ‘‘pull-toward’’ affordances very quickly, impos-
sible to achieve otherwise. These facts raise interesting
questions. (a) How we start making sense of sensory
covariations given this simple initial control? It would
seem like a mechanism since birth must be in place
(early attention to biological motion in the newborn, as
reported by Simion, Regolin, & Bulf, 2008, could be a
proof of that). (b) May sensory covariations be learned
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separately? This would certainly benefit the transfer of
learning from bi- to unimanual interactions and would
resolve Bernstein’s ‘‘motor equivalence problem’’ deal-
ing with an increasing motor program repertoire during
development (Sporns & Edelman, 1993). (c) How we
drive learning from large changes in the sensory space?
Learning needs to be driven by small action changes, in
the motor space (see Bullock, Grossberg, & Guenther,
1993), what we call delta actions (Braud, Pitti, &
Gaussier, 2018, and, Escobar-Juárez, Schillaci,
Hermosillo-Valadez, & Lara-Guzmán, 2016, consider
learning of affordances through delta actions), and also
in the sensory space (visual servoing approaches that
learn the so-called visual Jacobian; Hosoda & Asada,
1994).

We define and implement the learning process (based
on delta actions) of a set of four mappings (two of a
solely sensory nature) of increasing complexity to
address the distinction between motor and sensory
affordances, motor and visually guided AL, uni- and
bimanual affordances:

1. Forward/inverse full body control. Mappings from
the absolute motor state to the absolute sensory
state.

2. Forward/inverse delta control. Mapping small delta
motor actions and how these affect body movement
perceptual cues.

3. Singular interaction control. Mappings that consider
how single body-related perceptual cues covariate
with other sensory movement cues (i.e. from the
object).

4. Multiple interaction control (bimanual for short).
Mappings that consider how two or more body-
related perceptual cues covariate.

Map types 1 and 2 are of a sensory motor nature
and types 3 and 4 are what we mean by sensory map-
pings (types 3 and 4) is that they implement predictions
of sensory effects and its consequences on the sensory
side (as we do in Maffei, Herreros, Sanchez-Fibla,
Friston, & Verschure, 2017) and contain no direct
motor information. Maps consider delta actions and
delta sensory changes (the consequences of small
changes in either motor or visual domains). The motor
equivalence property is enforced as the same sensory
delta effect can be performed with many motor pro-
grams (by querying mapping 2). The consideration of
delta sensory and motor changes oblige us to introduce
context: one can query a mapping while being in a par-
ticular context (i.e. object position, absolute motor
state). Sensory mappings are affected as well by the
body as learning is guided by exploration and what can
be explored depends on the body. For very redundant
spaces, goal babbling (GB) driven exploration has been
proven efficient (Rolf, Steil, & Gienger, 2010) and con-
sistent with developmental approaches (Rolf & Asada,

2014) because it generates goals in the sensory space
and avoids exploring redundant motor goals. Delta
mappings call for a reformulation of GB in which we
interleave the generation of absolute and delta goals
(goals relative to the current absolute state): we present
this method as algorithm Context Goal Babbling: it
learns from sampling delta goals within a context.
Many generated goals are still far from reaching con-
tact with the object. We define Behavior-Based
Babbling, which adds to Context Goal Babbling gui-
dance through reactive behaviors which trigger object
attraction and implements a sensory GB learning.
Learning can be triggered by any change in the sensory
domain as presented in Event-Based Learning algo-
rithm. From mappings 3 and 4, visual affordances can
be defined that we call affordance gradients (AGs),
body-independent projections in the sensory space of
the manipulation abilities of objects. AGs can depend
on single or multiple points of actuation. The so-called
bimanual mapping is used to learn bimanual affor-
dances (bimanual AGs) in a simulated dual arm robot1,
and it’s also used to perform successfully a peg-in-hole
task.

2. Methods

A motor state m= hm0, :::,mn�1i corresponds to the
angles of every joint mi 2 ½0:::2p�. The motor space is
denoted by M. A delta motor state Dm=
hDm0, :::,Dmn�1i are the velocities of each joint, being n

the total number of DOFs. Concretely, we use a n= 6

simulated robot torso with two arms (see Note 1) and
an object (a square, a circle, or a triangle) shown in
Figure 1(a). Each arm has symmetric joint limits:

Figure 1. Robotic setup. (a) A simulated two-arm fixed torso,
being s0, :::, s2 the sensory interest points (SIPs) in the left arm,
s3, :::, s5 the ones in the right arm, and s6, s7 the ones in the
object. Simulation and results are available (see Note 1). The
velocity vectors are superimposed. (b) Signals from the SIPs in
(a): the velocity of SIPs s3 (the end-effector) and s6 (center of
the object) are plotted together with the activation of the haptic
signal of s3. The y axis is normalized from 0 to 1, so units are
arbitrary.
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m0 2 ½�0:9p:::0:2p�, m1 2 ½�0:9p:::0�, and m2 2
½�0:4p:::0:4p� for the left arm and m3 2
½0:2p:::� 0:9p�, m4 2 ½0:::� 0:9p�, and m5 2 ½�0:4p:::
0:4p� for the right one.

The sensory space (denoted by S) includes two mod-
alities, visual motion information and haptic inputs,
both gathered in what we define as sensory interest
point (SIP). A SIP is attached at a relevant feature of
the visual field (i.e. the end-point effector, at the junc-
tion between two arm links, at the corner of a square
object) and could be computed as SIFT features
defined by Lowe (1999) from the scene image (see
Figure 1(a)). A sensory state s consists of a set of SIPs:
s= fs0, . . . , si, . . .g each being a tuple

si = hpi = hxi, yii, hii

where pi corresponds to its two-dimensional (2D)
Cartesian coordinates and hi a real value haptic signal
normalized from 0 to 1. From the temporal SM data,
one can extract information about the changing signals
for each SIP

Dsi = h~vi = hvx
i , v

y
i i,Dhii

where~vi denotes the velocity vector of si, jj~vijj 2 ½0::1�
its magnitude, and Dhi the haptic signal change. We
call Ds the set of delta signals of each SIP si:
Ds= fDs0, . . . ,Dsi, . . .g. In total, eight SIPs are con-
sidered: three in each arm of the robot. End effector
SIPs will be denoted by sleft = s0 and sright = s3. Two
SIPs are added at the object: sobj = s6 at the center and
s7 in one corner (for the box and triangle) or lateral
(circle) (see Figures 1(a) and 6).

2.1. SM mappings

We identify a series of SM mappings of increasing com-
plexity that separate motor from visually guided action.
The mappings are built on a different interpretation of
‘‘action’’ itself. Action, at its lower level, is the group of
motor signals sent to the muscles or motors (as many
signals as DOFs). At a higher level, we can also inter-
pret action as the result of its sensory consequences: a
change at a sensory level, a movement of a perceptual
cue (the so-called SIPs, sensory points si) in the visual
modality. Changes at the sensory level (we refer to it as
Dsi) can also be interpreted as actions: some are caused
by low-level motor actions (arm motors causes related
perceptual cues to move in the visual field), others are
indirectly caused (movement of object-related cues due
to contact with the arm), and others may be caused
even more indirectly by, for example, gravity.
Dependencies and consequences in the sensory modal-
ity are captured by learning the mutual covariations of
SIPs. SIPs have been inspired by the biological motion
phenomena in which humans can perceive and under-
stand complex action having access to some few points

linked to relevant positions of a human pose (Simion et
al., 2008).

We define now, the following mappings:

2.1.1. Forward/inverse full body mapping. There is a one-
to-one mapping from m (body state) to s (perceptual
state)

f abs
i (m)= si ð1Þ

where f abs
i is the absolute mapping of every SIP si. In

its forward form, given the motor state m, returns its
position pi. Its inverse form returns the motor state to
be achieved given the position pi of the SIP. The inverse
mapping is not uniquely defined as there may exist
many motor states achieving a single sensory position.
We will denote the inverse of all mappings f �1 by g.
The inverse map is then gabs

i (si)=m. This mapping is
often studied in the SM learning and GB literature
(Benureau, Fudal, & Oudeyer, 2014; Forestier &
Oudeyer, 2016b; Moulin-Frier & Oudeyer, 2013; Rolf
et al., 2010) and does not take into account time, nor
small changes of actions, that we call delta actions.

2.1.2. Delta motor to sensory. Delta mappings capture
the effects of applying delta changes in motor (Dm) and
sensory (Ds) space. They subsume the absolute mapping
f abs
i (m)= s, but as we will see, they are useful when
incorporating the notion of context. We may want to
know what will be the result of a delta action knowing
the current state, and we may want to know the delta
action to apply if we want to observe a delta sensory
change. The delta motor to sensory mapping takes as
input a motor state m and a delta motor command Dm

and returns the resulting sensory state si (including
position pi) and velocity ~vi =Dsi (m acts as context
here)

f Dm
i (m,Dm)= hm, si,Dsii ð2Þ

where m and si are the motor and SIP states before a
motor variation Dm was applied and a sensory effect
Dsi was observed. The state m acts as context here and
fully determines any si. This mapping subsumes
f abs
i (m)= si.
Forward/inverse delta control mappings are reminis-

cent of the work of Bullock et al. (1993), have been
considered to learn affordances in Braud et al. (2018),
and relate to visual servoing and the visual Jacobian in
robotics (see, for example, Hosoda & Asada, 1994, in
which the so-called visual Jacobian considering visuo-
motor variations is learned). Only through mapping
(2), a desired perceptual change can be provoked by
querying the appropriate motor delta command to be
performed. Mappings (3) and (4) are purely sensory in
the sense that they capture how sensory perceptual cues
(SIPs) covariate.

Sánchez-Fibla et al. 3



2.1.3. Two interacting SIPs. A sensory mapping for every
two SIPs

f Ds
ij (sj,Dsj, si)= hsi,Dsii ð3Þ

Given the position and velocity of sj together with
another SIP si, the mapping returns the resulting velo-
city Dsi and its position as a context. Intuitively, this
mapping captures the fact that if si is moving or it
stopped, the cause may be sj. An si may be a SIP on
the object (denoted by sobj). If sobj is moving in a certain
direction~vobj, a possible cause is sj being in contact with
the object and pushing it toward~vi.

This mapping is completely sensory and bringing the
mappings to the sensory side when possible makes them
independent of the body. If we make one of the seg-
ments of one arm longer, the motor mappings have to
be relearned but not the sensory ones. This continues to
be the case if we include another segment in the arm.
Another important advantage is the scalability of the
mapping. If we are considering a very high dimensional
system like the human arm (including the hand with its
about 30 DOFs), learning the mappings that include
motor components would be much costly (3 compared
to 30 input DOFs).

The sensory mappings have to work in conjunction
with the previous learned delta mappings if we want to
reach bidirectionally. For instance, if we want to know
the delta motor command that we need to achieve a
velocity in a certain position of the SIP pi, we can access
the inverse mapping: gDm

i (m, si,Dsi)=Dm, with the
motor state m as context. We cannot use si here as the
motor state for a given si is ambiguous. If we need to
know the absolute motor command that can bring us to
position pi, we can use again: gabs

i (si)=m.

2.1.4. Three interacting SIPs. For every two SIPs, we con-
sider an SM mapping to be able to address bimanual
affordances. If one SIP si moves, every two other SIPs
are selected as possible causes of that movement

f Ds
ijk (sj, sk ,Dsj,Dsk , si)= hsi,Dsii ð4Þ

This mapping will allow us to capture bimanual
affordances when considering the target SIPs on the
object: si = sobj with i 2 f6, 7g in our case.

2.2. Exploration strategies

In a robotic context, the aforementioned mappings
have to be learned through the interaction of the agent
with the environment. This is a departure from classical
machine learning approaches where the training set is
generally provided by some external process (e.g. a
given database of images). In our case, the training set
is iteratively built according to the robot activity, gener-
ating data about the effects of executed motor actions.

This has two important consequences. First, the learn-
ing has to occur online, that is, the learned SM map-
pings have to be updated regularly according to the
robot experience. Second, the learning is considered
active, that is, the robot has to actively choose how to
explore the world in order to iteratively generate an
informative training set for the considered mappings
and how they will be used to solve the required task
(e.g. to perform forward or inverse predictions).

Moreover, the learning of the mappings is not guided
by reward as reinforcement learning (RL) methods are
(see section 4.5). The problem we are addressing is a
typical supervised learning problem: given a set of
observed (tin, tout) tuples, how to predict tout given an
unseen tin (forward prediction), and how to infer tin
given an unseen target tout (inverse prediction). We use
the general notation (tin, tout) and not motor (m 2 M)/
sensory (s 2 S) because we go beyond SM maps and
sometimes they are solely sensory related. For this rea-
son, we learn SM and sensory maps based on a super-
vised methodology of input–output samples. The maps
can then be queried in a forward and inverse way, to
know the actions to make to achieve a desired goal
state.

2.3. Mappings implementation

The mappings are implemented using Explauto library
(Moulin-Frier, Rouanet, & Oudeyer, 2014), which uses
kd-trees to store the input and output spaces and to
efficiently find the nearest neighbor of a given tuple tin.
When we query the kd-tree of the input side with a vec-
tor tin, the nearest neighbor of tin is found in the data-
set, and the corresponding tout is returned. Similarly, for
an inverse query. The addition of context queries only
adds dimensions in the input and output spaces but the
query process is implemented similarly. See Note 1 for
links into the implementation.

2.4. SM learning processes

For learning, we present two variations of GB which
has been proven to be very effective for high DOFs
(Rolf et al., 2010): Context Goal Babbling and Behavior-
Based Babbling, together with a learning based on per-
ceptual changes that we call Event-Based Learning.

2.4.1. GB with context. We use an active GB strategy
based on the maximization of the learning progress as
implemented in the Explauto library (Moulin-Frier et
al., 2014): goals are generated according to where we
progress more (Moulin-Frier & Oudeyer, 2013).

In this library, an interest model is a way of self-
generating goals, which we denote by I in Algorithm 1.
We use the ‘‘discretized_progress’’ interest model (avail-
able in the Explauto library). This algorithm discretizes
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the goal space into small regions and monitors the com-
petence in reaching the goals in each region. It will then
sample new goals in the regions where the competence
progress is high in order to maximize the expected
future progress.

As mentioned, for the delta mapping, we need to
introduce context (the sensory state in which the delta
action is applied). When learning an absolute mapping,
one can reset the motor state at each time, trying to
achieve the new goal, setting the motors to the new
inverse predicted state. But one could benefit from gen-
erating goals given the current state, to try to achieve
target delta velocities given the current motors position.

Algorithm 1 does GB in such conditions in which we
interleave the generation of absolute and delta goals.
We sample with some probability thabs an absolute goal
(line 1). We query the absolute motor state to achieve it
via an inverse absolute mapping (line 2). We then access
the current global state (line 3) and sample a delta goal
using it as context (line 4). We proceed by querying the
inverse delta SM map to try to achieve the correspond-
ing delta goal (line 5). We then execute the delta action
(line 16). Then the delta sensory motor map (line 17)
and the interest models are updated (line 18). Finally, a
mean squared error (MSE) evaluation is performed by
generating a number of trials and evaluating both for-
ward and inverse mappings (we do not provide the
details here).

To evaluate the inverse performance, we have to
generate a goal that is reachable in a uniform way. In
any other case, the error would be large always. In line
1, we sample a goal from the sensory space using the
reachability maps generated so far (Figure 3). These
maps are generated with Gaussian kernels reachable
positions, thus it will generate goals that are feasible
but not necessarily in the database.

2.5. An event-based learning process

An event is considered to be a detection of a change in
speed (increase or decrease) of any SIP denoted
change(~vi) in Algorithm 2 or any change in its

associated haptic signal. A moving event of SIP si can
then have an associated causal context involving SIPs
that are moving or that have an haptic activation at
that moment: C = fsjjhj . 0_ k~vj k . 0g.

The SM memory is updated continuously, in this
way, when an event related to sensory point si occurs,
the forward and inverse prediction error of that event
can be computed for mappings involving si and its cau-
sal context C. An event triggers the update of the map-
pings if these prediction errors are greater than a
threshold (lines 9 and 10).

Consider the situation depicted in Figure 1(b). A
change in velocity~v6 of SIP s6 will trigger an event. The
causal context is C = fs3, s4, s5, s7g. Depending on the
forward and inverse prediction errors, the mapping f Ds

ij

can be updated for i= 6 and j 2 f5, 4, 3, 7g.
The effects of an action on the orientation of an

object can be derived from the mappings involving two
SIPs on the object. Alternatively, one could include
mappings that consider the rotation of an object as we
will also do.

2.6. Reactive exploration

GB, as it includes an inverse prediction of the model,
requires a preliminary phase of interaction with the
environment to collect the first SM data bootstrapping
the model. This is usually done by a preliminary phase
of motor babbling. Instead, here we introduce a reac-
tive exploration strategy based on the Distributed
Adaptive Control (DAC) theory (Verschure, Voegtlin,
& Douglas, 2003; Verschure, Pennartz, & Pezzulo,
2014) which considers that cognition relies on the inter-
action of four control loops operating at different levels
of abstraction. Two of these control loops, called
layers, are relevant for the present study: the reactive
layer, implementing the ‘‘out-of-the-box’’ behavior of a
cognitive agent and supposed to be pre-wired (e.g. from
evolution in a biological context, or by the programmer
in a robotic one), and the adaptive layer, supporting
SM learning mechanisms from the data collected at the
reactive level. We present it in Algorithm 3 and we call
it Behavior-Based Babbling. We add a reactive reflex
during the learning of SM mappings to be able to

Algorithm 1. ContextGoalBabbling()

while error.therror do
if random ().thabs then

1 sgoal  sample_goal (If )
2 m gabs(sgoal)

goto_motors (m)
3 hm, si  get_state ()
4 Dsgoal  sample_delta_goal (If , s)
5 Dm gDm(m, s,Dsgoal)
6 Dsobs  delta_motors (Dm)
7 update (f Dm, hm,Dmi, hs,Dsi)
8 update (If , hs,Dsgoali)

error evaluate_mse (ntrials, f , g)

Algorithm 2. EventBasedLearning()

for si 2 S ^ change(~vi) do
C  fsjjj 6¼ i ^ (hj.0_ k~vj k .0)g
for sj, sk 2 C do

error  jjhsi,Dsii � f Ds
ij (sj,Dsj, si)jj

error2  jjhsi,Dsii � f Ds
ijk (sj, sk,Dsj,Dsk, si)jj

9 if error.therror then
update (f Ds

ij , hsj,Dsj, sii, hsi,Dsii)
10 if error2.therror then

update (f Ds
ijk , hsj, sk,Dsj,Dsk, sii, hsi,Dsii)

Sánchez-Fibla et al. 5



generate relevant absolute states and guide exploration
(line 11). This idea has already been implemented in
several computational models based on the DAC
framework (e.g. Moulin-Frier, Sanchez-Fibla, &
Verschure, 2015; Puigbo et al., 2015), but was not
linked to the concept of exploration strategies. The
reactive reflex that we introduce attracts the end-points
of the arms to the object when learning the bimanual
setup. Behavior-Based Babbling, Algorithm 3, performs
reactive behaviors that serve as exploration of global
states (line 11).

Behavior-Based Babbling learns only the sensory
mappings and assumes the SM ones have already been
learned: (1) it generates sensory goals (line 12) and
queries what are the sensory delta movements that can
achieve it (line 13), then (2) uses the previously learned
SM maps to query what are the delta motor actions to
observe those delta sensory movements (lines 14 and
15), and (3) updates only the sensory mapping (line 17).

2.7. Affordance gradients (AGs)

AGs were introduced in Sánchez-Fibla, Duff, and
Verschure (2011) as object-centered SM structures to
predict (bidirectionally) its sensory displacement effects
given an actuation point on the object and a velocity
vector. In Figure 2, we show the AGs learnt through
systematic mobile robot pushes from different angles of
a trapezoidal object as presented in Sánchez-Fibla et al.
(2011). This raises the question of how are the ego-
centric and allocentric properties of the body–object
interaction through affordances integrated. When see-
ing an object, we have access to its possible affordances
not only independent of our body but independent of
our mobility constraints. We compare the AGs learned
in Sánchez-Fibla et al. (2011) with the ones here later
on (shown in Figure 6). AGs are computed from
sequences of SM interactions through the mutual cov-
ariation of groups of sensory points. Each sensory
point has its area of reachability (as shown in Figure 3)

and this area will determine and constrain the possible
interactions of each sensory point.

AGs are defined here as sensory mappings and can
be obtained from one point of actuation and a sensory
displacement (mapping 3) or from two points (mapping
4, giving rise to bimanual affordances).

Consider, for example, mapping (3) where two SIP
si,sj interact (only one being an active point, si) and
having the associated mapping: f Ds

ij (sj,Dsj, si)= hsi,Dsii
which we define as the AGij of sensory point i given
actuation point j.

An AGijk can also be defined from mapping (4) with
three interacting sensory points (two of them being
actuators): f Ds

ijk (sj, sk ,Dsj,Dsk , si)= hsi,Dsii.

3. Results

We present a diverse set of results that follow our
approach of building a proof of concept of emerged
bimanual affordances from SM interactions. We start
in the order of increasing complexity benchmarking the
different mappings from SM to solely sensory ones,
deriving to body-independent forward/backward pre-
diction functions that we have named AGs.

We do not present a full portfolio of results of the
different types of SM learning that have been

Algorithm 3. BehaviorBasedBabbling()

while error.therror do
if random ().thabs then

11 hsl, sr, sobji  ReactiveBehaviorLoop()
12 Ds

goal
obj  sample_delta_goal (If , sobj)

13 hDsl,Dsri  gDs(sobj,Ds
goal
obj )

if IndividualArmMode then
14 Dm gDm

l (m, sl,Dsl) [ gDm
r (m, sr,Dsr)

else
15 Dm gDm(m, sl, sr,Dsl,Dsr)

16 hDsobs
l Dsobs

r Dsobs
obj i  delta_motors (Dm)

17 update (f Ds, hsl, sr,Dsobs
l ,Dsobs

r , sobji, hsobj,Dsobs
obj i)

18 update (If , hDsobs
obj ,Ds

goal
obj i)

error evaluate_mse (ntrials, f , g)

Figure 2. Epuck robot interacting with an object. In right
column of Figure 6, we show the AGs learned for various
objects (see Sánchez-Fibla et al., 2011, for further details).

Figure 3. Reaching occupancy maps of the different SIPs after
exploration. (a) s0 and s3 maps, (b) s1 and s4 maps, (c) s2 and s5

maps, (d) s6 map, and (e) s7 map. A Gaussian was added
whenever an event caused an SM update.
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introduced: Behavior-Based Babbling and Event-Based
Learning. We concentrate on the joint features that we
tested and gave better results to achieve the learning of
bimanual affordances. The main three steps toward
bimanual manipulation that we benchmark are as fol-
lows: (1) the study of the delta mappings, (2) the AGs
learned and applied to different SIPs, and (3) the
bimanual AGs corresponding to learning the sensory
mapping considering three SIPs.

3.1. Learning the delta SM mapping

We benchmark the absolute SM mapping in the case
where we learn both arms at the same time
f abs(m)= hs0, s3i and we compare it with the same
motor to sensory delta mapping f Dm(m,Dm)=
hm, s0, s3,Ds0,Ds3i (having the double DOFs both in
the input and in the output spaces, indicating that it
will be more difficult to learn).

For learning the absolute mapping, we perform 500
evaluations (see Figure 4(d)) of five goal positions dur-
ing learning. Each goal is an end position of both arms
(see Figure 4(a) to (c)). For every five tested goals, we
plot the error mean and the minimum and maximum
error values of the five evaluation tests (in a lighter
color scale).

We use the Context Goal Babbling (Algorithm 1) for
the delta case evaluated with an inverse MSE evalua-
tion. For the learning, we perform 500 evaluations of

five tested goals for a total of five delta movements gen-
erated at 500 absolute motor positions (see Figure 4(e)),
thus a total of 2500 interest generated goals. For each
five tested goals, we plot the minimum and maximum
error values as before.

In many situations (positions of the arm m), achiev-
ing a delta movement is not possible. Many joint con-
figurations make the arms collide when trying to be
realized. See how the reachable space of both end-
points intersect in Figure 3(a). It is also difficult to gen-
erate a uniform distribution of feasible delta move-
ments for evaluation, and in fact delta goals are
generated at random, being unfeasible many times.

3.2. Learning SIPs and object SM mappings

We present the mappings involving the object SIPs s6

and s7 learned from Event-Based Learning Algorithm 2
and Behavior Based-Babbling Algorithm 3. The number
of tuples of each object model (learning is implemented
with Explauto library using nearest neighbor, see sec-
tion 2.3, executed in a quad-core i7 laptop computer
during 3 h). The tuples stored for f Dm

6, 0 were 8553, for
f Dm
6, 1 1146, and for f Dm

6, 3 567. As expected, it is higher for
end-points and progressively decreasing for SIPs closer
to the torso. This indicates the decreasing number of
events related to s0, s1, and s3. The number of tuples
for s0 seems quite high, but as we see in Figure 4, the
error is quickly reduced in the beginning. The number

Figure 4. Learning of absolute and delta mappings. (a,b,c) Examples of bimanual reaching. The target and end-position of the
absolute mapping are shown together with its associated error (dashed lines). (d) MSE learning curve of the absolute mapping
f abs(m)= hs0, s3i. (e) Mean squared error learning curve of the mapping: f Dm(m,Dm)= hm, s0, s3,Ds0,Ds3i.
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of tuples of the nearest neighbor databases is not an
exact number because we filtered the tuples that had no
prediction error (line 9 of Algorithm 2).

We show results on the generated reaching maps
(Figure 3). The reaching maps are generated adding a
Gaussian, every time the SIP moves (as in Algorithm
2), to the map of the involved interest point, causing
the movement (being in the causal context). These indi-
cate where events happened.

3.2.1. AGs. We can compute the forward predictions
of different mappings corresponding to the effect that
different SIPs have on the object SIP s6. Take, for
example, the mapping of equation (3) specialized for s6

and s0: f Ds
6, 0(s0,Ds0, s6)= hs6,Ds6i. We define the AG

specialized for s6 and s0, AG6,0 as the effects of delta
changes Ds0 applied toward the center of the object s6

from all possible directions (shown in Figure 5(a)).
From each incident position s0, we also plot the cer-
tainty of that forward prediction by showing a bigger
or smaller circle. The certainty corresponds to the nor-
malized distance of the nearest point in the mapping.
The uncertainty increases AG6,2 (Figure 5(d)) in the
upper right corner of the object. The prediction in an
unobserved input sensory state is unreliable.

The computed AGs demonstrate that the object can-
not be pulled toward the agent’s body with one arm in
certain conditions. Mapping f Ds

6, 0 suggests no option for
bringing the object completely downward (Figure 5(a))
but still can be pulled towards. This impossibility gets
accentuated with mapping f Ds

6, 1 (Figure 5(b)) and f Ds
6, 2

from which all movements push the object away. When
learning mappings with both hands, the ‘‘pull toward’’
affordance becomes available in certain conditions.

We compute the forward predictions of the map-
pings corresponding to the effect that different SIPs
have on the two object SIPs s6 and s7. Take the map-
ping specialized for a particular case: f Ds

6, 7, 0(s0,
Ds0, s6, s7)= hs6, s7,Ds6,Ds7i. In this way, we can
account for rotations of the object. After 500 interac-
tions with the object, the mapping is queried to visua-
lize the effects of Ds0 actions moving toward the center
of the object (see left column of Figure (6)). Figure 6(a)
shows AG6, 0 for a squared object, Figure 6(b) shows
AG6, 0 for a circular object, and Figure 6(b) shows
AG6, 0 for a triangle.

We consider the AGs also in another case where a
completely unconstrained approach/navigation can
freely access any point of incidence of the object. It is
the case of an Epuck robot interacting with objects by
pushing actions (see Sánchez-Fibla et al., 2011, for

Figure 5. Affordance gradients AG6;i of the mappings
f Ds
6, i (si,Dsi, s6)= hs6,Ds6i for i 2 f0, 1, 2, 3g. (a, b) The object is
at position (0, 1:5), (c) object position (0, 0:5), and (d) object
position (0, 1:5).

Figure 6. Learning AGs of other objects. Left column: AGs
learned for s0 when interacting with a (a) squared, (c) circular,
and (e) triangular objects. At each point in the circle, the effect
of applying a Ds0 movement toward the center of the object is
visualized as two vectors indicating the displacement of s6 and s7

(shaded) and a circle indicates how the object rotates (the
bigger the circle the bigger the rotation). (c) No rotation is
predicted for the circular object. Right column: AGs learned
from a mobile robot interacting with the same objects (see
Sánchez-Fibla et al., 2011, for details).
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further details). For comparison purposes, we show
side by side the AGs computed in the two cases (see
Figure 6): freely moving mobile robot (right column)
or a two-arm robot constrained by a fixed torso (left
column, and setup of the paper). The comparison
shows how AGs are body dependent as in the case of
the mobile robot AGs are smooth and have
symmetries.

3.2.2. Motor equivalence. In the sense of Bernstein, we
describe the motor equivalence (available redundant
motor programs to achieve the same sensory goal) that
can be achieved by different mappings. As shown in
Figure 5(a) and (b), a very similar effect (displacement
of s6) could be achieved by AG6, 0 (acting with s0) or
AG6, 1 (with s1). Thus, the same sensory goal could be
achieved with two alternative motor programs.

3.3. Bimanual AL

What are the mappings that we can use to learn biman-
ual affordances? The most general mapping that we
can use is the three SIPs mapping that we have
described. Depending on the effects that we want to

capture on the object, we would need to consider two
interest points s6 (in the center) and also s7 (in one cor-
ner) to be able to deal with the object rotations. This
would lead us to learning the mapping: f Ds

6, 0, 3(s0, s3,Ds0,
Ds3, s6, s7)= hs6, s7,Ds6i. Instead of addressing this
general case, we limit the learning to a situation where
the arms are reactively holding the object (as in
Figure 8). This corresponds to the reactive guidance
provided by the described Behavior-Based Babbling. In
this way, the input space is reduced and we only con-
sider the Dsi of each arm end-point. We lose in this case
the relative positions of the arm end-points and the
object. The simplified mapping that we learn is
f Ds
6, 0, 3(Ds0,Ds3, s6) = hs6,Ds6,ai.
We learn it with Behavior-Based Learning

Algorithm 3 on the output space hDs6,ai having s6 (the
position of the object) as context. We include the angle
a of the object rotation instead of considering two
interest points on the object. We learn a model of 5700
tuples but we also realized that only few 50 tuples are
necessary to start to observe consistent bimanual affor-
dances. This may be caused by the oversimplified map-
ping. We show the error learning curve in Figure 7(d).
The error plotted corresponds to the mean squared dif-
ference of both the angle and the delta difference:

Figure 7. Learning of bimanual affordances. (a–c) Top row: Learned movements of the arm end-points to be performed for moving
the object left/right (see figure b) and towards/away from the torso (see figures a,c). Bottom row: We plot the learning curve of the
MSE error with the variance in a lighter color.
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hDsobs
6 ,aobsi � hDs

goal
6 ,agoali being s6 the provided con-

text. The error is computed from delta Ds6 goals that
are randomized but fixing the target angle to 0.

To exploit the information of the SM mapping, or
equivalently, of the AGs, to solve a peg-in-hole task, one
has to query in an inverse way this mapping to obtain the
delta actions of both end-points so that we attain a target
displacement and target angle rotation (Ds0 and Ds3). To
produce a target delta action, we can use the delta map-
ping learned for this purpose in an inverse way to obtain
the target delta motor action: gDm

0 (m, s0,Ds0)=Dm.
Figure 7(a) and (b) show different inverse queries in dif-
ferent points of the sensory space to achieve the goals of
moving the object up and down (first case) and moving it
left and right (second case). The first case of moving the
object up and down was previously impossible to achieve
with two interest points mappings, as seen in Figure 5, in
which no action gives the possibility of moving the object
toward the robot from that position. Once the mappings
are learned, we can set the goals in a greedy way so to
match the target position of the object. Figure 8 shows a
sequence of actions for a ‘‘pull toward the agent’’ target
position.

We tried the learning with a triangular object and
realized the reactive behavior needs to be changed to
successfully be able to manipulate the object in any
direction. In Figure 7(c), for example, we can see that
the mappings learned do not perform any action when
the object has to be pushed away, but correctly learned
pull-toward actions when it has to be pushed down.

4. Discussion and related work

4.1. SM and solely sensory mappings

We raise an important issue for AL about the separa-
tion of SM mappings from the sensory ones, allowing
the latter to be independent of changes in the confirma-
tion of the body, more efficient in terms of being

independent of the high number of motor DOFs (i.e.
there are 700 skeletal muscles and tendons in the
human body), and applicable when observing other
agent’s actions. In this way, the processes of fine tuning
motor to sensory mappings can run in parallel while
learning the covariations of related perceptual cues,
bidirectionally boosting the acquisition of sensory to
sensory ones which are fundamental to acquire basic
SM contingencies based on physical laws (Battaglia,
Hamrick, & Tenenbaum, 2013): gravity consequences,
collisions, and so on. Here, we first learn the kinematics
of the arms before learning any interaction with the
object, but in Forestier and Oudeyer (2016b), different
procedures are designed to learn both mappings in par-
allel. Once a relevant mapping between motor and sen-
sory signals is learned, predictions can happen in the
sensory domain (for achieving better generalization to
unexpected events, see, for example, Maffei et al.,
2017).

The separation of motor and sensory spaces lead us
to two learning algorithms. Context Goal Babbling
interleaves the generation of absolute and local sensory
goals and learns SM mappings of type 2 (forward/
inverse delta control). On the other hand, Behavior-
Based Babbling reaches absolute states by reactive beha-
vior guidance and generates delta sensory goals training
pure sensory mappings of types 3 and 4 (singular and
multiple interaction control). Both algorithms are based
on goal babbling (GB), that is, learning is driven by
generated goals that need to be achieved. GB is suited
for learning in redundant spaces as many motor states
can bring to the same sensory. It is more efficient to
learn how to achieve a sensory state by learning one of
its causal motor states, than trying many motor states
that bring to the same sensory state (Benureau et al.,
2014; Moulin-Frier and Oudeyer, 2013). We believe
that this advantage is less important when mappings
are in the sensory side as this redundancy is reduced
(singular and multiple interaction control mappings).

As we said, we learn SM and sensory maps based on
a supervised methodology of input–output samples and
not guided by reward. The mappings could be stored
and approximated with deep neural networks by using
two different networks for the forward and inverse
mappings.

4.2. Links to Psychology and neurobiology

There is evidence in developmental psychology that the
brain goes from synchronous whole body control to
asynchronous specialized control, from low DOFs to a
higher DOF’s control: as an example, Corbetta and
Thelen (1996) show that synchronized bimanual move-
ments are learned before unimanual ones during infant
development. Bimanual movements may have large
sensory consequences. This is a hint to the fact that the
brain must encode the motor to sensory consequences

Figure 8. Bimanual control. Arbitrary sequence of actions in
the peg-in-hole task.
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and the learned covariations of perceptual cues sepa-
rately. The newborn has to start making sense of the
laws governing the visual modality as soon as possible.

Another consequence of this fact is that different
specialized motor programs to realize the same goal-
directed object interactions accumulate during develop-
ment a characteristic that is known as motor equiva-
lence (Sporns & Edelman, 1993), term coined by
Bernstein. Motor program redundancy increases during
development because an increasing set of specialized
motor elements is learned to be used.

Neurobiological evidence shows that the brain
encodes different schemes for unimanual and bimanual
movements (Yokoi, Hirashima, & Nozaki, 2011, 2014),
multiplicatively encoding information from the kine-
matics of both arms. This would be consistent with our
hypothesis of the fact that we need a single and a multi-
ple interaction mapping (sensory mappings 3 and 4) to
perform bimanual movements. In the experiments sec-
tion, we also benchmarked the SM map including a
multiplicative encoding of all motors and a delta action
to several output sensory-related points:
f Dm(m,Dm)= hm, s0, s3,Ds0,Ds3i. In this way, not only
sensory maps are dedicated to the covariation of sen-
sory perceptual cues, but SM maps as well.

4.3. Learning the mappings

Two families of exploration mechanisms recently
shown to be efficient to learn complex non-linear
redundant SM mappings. The first one concerns the
space in which the learning agent chooses points to
explore, what has been called the choice space in
Moulin-Frier and Oudeyer (2013). Previous models
(Baranes & Oudeyer, 2012; Rolf et al., 2010) have
shown that learning redundant inverse models could be
achieved more efficiently if exploration was driven by
GB (choice space: S), rather than direct motor bab-
bling (choice space: M). GB is especially efficient to
learn highly redundant mappings (e.g. the inverse kine-
matics of a high-dimensional arm). At each time step,
the agent chooses a goal sg in the sensory space S (e.g.
uniformly), uses the current knowledge of an inverse
model to infer a motor command m 2 M to reach sg,
observes the corresponding consequence s= f (m), and
updates its inverse model according to the newly col-
lected (m, s) pair. This exploration strategy allows the
agent to cover the goal space more efficiently, avoiding
to waste time in redundant parts of the SM space (e.g.
executing many motor commands that actually reach
the same goal). The second mechanism comes from the
field of active learning, where exploration strategies are
conceived as an optimization process. Samples in the
input space (M in our SM framework) are collected in
order to minimize a given property of the learning pro-
cess, for example, the uncertainty (Cohn, Ghahramani,
& Jordan, 1996) or the prediction error (Thrun, 1995)

of the model. This allows the agent to focus on parts of
the SM space in which exploration is supposed to
improve the quality of the model.

Combining both principles, recent works grounded
in developmental psychology have concentrated on
defining empirical measures of interest, either in the
motor M or sensory S spaces. Computational studies
have shown the importance of developmental mechan-
isms guiding exploration and learning in high-
dimensionalM and S spaces and with highly redundant
and non-linear SM mappings (Baranes & Oudeyer,
2012; Oudeyer, Kaplan, & Hafner, 2007). Among these
guiding mechanisms, intrinsic motivations, generating
spontaneous exploration in humans (Berlyne, 1954;
Deci & Ryan, 1985), have been transposed in curiosity-
driven learning machines (Barto, Singh, & Chenatez,
2004; Schmidhuber, 1991; Schmidhuber, 2010) and
robots (Baranes & Oudeyer, 2012; Oudeyer et al., 2007)
and shown to yield highly efficient learning of inverse
models in high-dimensional redundant SM spaces
(Baranes & Oudeyer, 2010, 2012). Efficient versions of
such mechanisms are based on the active choice of learn-
ing experiments that maximize learning progress, for
example, improvement of predictions or of competences
to reach goals (Oudeyer et al., 2007; Schmidhuber,
1991). This automatically drives the system to explore
and learn first easy skills and then explore skills of pro-
gressively increasing complexity.

The Behavior-Based Babbling could also be guided
by a process of synchronization and de-synchronization
of DOFs. For instance, Kawai et al. (2013) presents a
computational modeling of such a process: by synchro-
nizing DOFs in control, we get quickly to good solu-
tions that can then be fine-tuned by de-
synchronization. In fact, some reflexes (like the grasp-
reflex; Ugur, Nagai, Sahin, & Oztop, 2015) could be
considered an early stage of synchronized control. So
approaches that use multi-joint reflexes to guide learn-
ing could be affected by this fact (e.g. Sanchez-Fibla,
Duff, & Verschure, 2013).

4.4. Delta mappings

Small changes in the motor or sensory signals can pro-
duce large effects in the sensory side (Bullock et al.,
1993). A consequence of this fact is that learning of SM
maps is best driven by the so-called delta actions: small
changes in the motor or sensory signals. Computational
models of affordances have considered the learning
through delta actions (see, for example, Braud et al.,
2018; Escobar-Juárez et al., 2016) closer to the continu-
ous characterization of affordances, the so-called
micro-affordances (Ellis & Tucker, 2000) in which a dis-
tinction between the brain triggered goal-related prop-
erties of objects (continuous action-effect possibilities;
Sánchez-Fibla et al., 2011), and the motor programs to
actually realize them (being initiated by hand (Hoff &
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Arbib, 1993) or bimanual preshaping), are distin-
guished. Also, neurophysiological findings support the
importance and usage of delta actions in the brain (see
the gain field encoding of Yokoi et al., 2011).

We put emphasis on the fact that delta mappings can
also be considered in the sensory side by capturing how
sensory cues covariate. The so-called sensory delta map-
pings (types 3 and 4) capture the covariations of two and
three SIPs, respectively. This fact is not contradicting
Sensorimotor Contingency Theory (O’Regan & Noë,
2001). An action can also be characterized by its change
in the sensory modalities, even forgetting the motor com-
mand that caused it, but it continues to be an action and
something that actively moves/changes on the sensory
side. One can then query an SM map to retrieve what is
the motor action to be performed to observe a certain
sensory change. The Behavior-Based Babbling Algorithm
3 generates sensory goals, queries sensory movements,
acts using SM maps, learns only the sensory maps.

The learned sensory maps (types 3 and 4), and
the derived so-called AGs, depend on the body, as
the body facilitates different kinds of exploration.
In Figure 5, we show how the affordances that an inter-
action enabled by end-point s0 is different from the one
of s3. In Figure 6, we show that the affordances obtained
from the constrained two-arm torso and the ones of a
freely moving mobile robot are as well different.

4.5. RL

We previously discussed that the learning of the map-
pings is not guided by reward as RL methods are and
that we are addressing the learning as a typical super-
vised problem. The mappings that we have presented,
capture the consequences of delta (motor or sensory)
actions and are indexed by goal information (goals to
be achieved are queried as part of the forward or
inverse input space of the mapping). This can be linked
to the hierarchical RL approach of Kulkarni,
Narasimhan, Saeedi, and Tenenbaum (2016) in which
goals are also included in the RL function.

We separated the learning of SM and sensory maps.
We performed a mixture of model-free (the SM maps),
model-based (the sensory maps) learning. The sensory
mappings serve as a model of the world that can guide
the achievement of goals and the execution of actions.
Model-based approaches are identified as the next
direction to pursue in RL (Lake, Ullman, Tenenbaum,
& Gershman, 2017).

Ideas related to GB have also links to RL. The fact
that any sensory state achieved during learning can be
used as goal state for the action that has just been per-
formed is related to the concept of virtual goal of
Baranes and Oudeyer (2012). This idea has been rein-
vented in the deep RL research: Hindsight Experience
Reply (Andrychowicz et al., 2017).

4.6. Real-world dynamic environments

Our setup and results come with some limitations and
could not be implemented in a real humanoid robot
directly. First, we are assuming the agent has access to
the sensory information through the sensory points
(SIPs) that are given. SIPs should be computed from
the visual image extracted from some stable features
(as mentioned, one could use SIFT (Lowe, 1999) for
that purpose). Alternatively, one could use some mar-
kers (QR codes) placed in the relevant point of the
arms and objects. Second, we are also assuming a flat
2D environment implemented with a 2D simulation
physics library. The extension to a three-dimensional
(3D) world and 3D affordances is not clear and poses
some challenges. From a sensory perspective, it can
happen that the state is hidden or partially observa-
ble: an object may be moving because an actuation
point behind it (and not visible) is applying a force to
it. Zech et al. (2017) mention several papers dealing
with a 3D environment extracting 3D features to com-
pute affordances. If one wanted to implement our
approach into a real robot directly without modifica-
tion, we could assume a humanoid robot is looking
downward to a table where the objects are placed and
some markers are added on the objects and end-point
effectors of the robot. The robot would need to know
the plane of interaction with the table to make feasible
movements. For the rest, we think that the setup cap-
tures some important aspects of bimanual interaction.

Another aspect that would complexify the learning
is the presence of other agents. Other agents may
cause events in the world that are not related to
actions that we did: direct (arm moved) or indirectly
(object moved). This fact is in favor of learning the
SM and sensory maps separately. One would need to
know what are the aspects of the world that we can
control: see Kemp and Edsinger (2006) and Sánchez-
Fibla, Moulin-Frier, Arsiwalla, and Verschure (2017)
for approaches dealing with those aspects. Also
learning of body image through haptic signals is
important: see Mannella et al. (2018) where they use
a very similar setup but only considering learning
anticipatory haptic signals without the interaction
with objects.

4.7. Tool use extensions

With a simpler simulated robotic arm, Forestier and
Oudeyer (2016a) use a representation of SM experience
as a hierarchy of SM models that a curiosity-driven
agent explores. They study the role of this representation
on the development of tool use precursors as the unfold-
ing of three types of behaviors: behaviors without
objects, behaviors with one object, and interaction
between two objects.
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5. Conclusion

We have looked at the low-level perspective of compu-
tationally modeling affordances and AL as a general-
ized case of forward/inverse kinematics learning. Our
main contribution consists in separating the learning of
SM mappings from the sensory covariations alone for
multi-limb interaction. We have considered the follow-
ing: (1) forward/inverse full body control and its body
to absolute sensory mappings, (2) self-centered forward
control (with the inclusion of delta sensory and motor
actions), (3) singular interaction control (one to one
sensory implications), and (4) multiple interaction con-
trol (how several sensory points affect each other, cov-
ariate). Mappings range from ‘‘motor to sensory’’
(types 1 and 2) to ‘‘sensory to sensory’’ (3 and 4).
Sensory mappings do not need to be relearned if body
changes. Mappings including knowledge of delta motor
actions can be difficult to learn because they include
the double of DOFs but at the same time provide a use-
ful SM knowledge in the presence of a sensory/proprio-
ceptive context. Deep neural networks could be used to
approximate the mappings in an efficient way.

We make contributions to the learning mechanisms of
the described SM and sensory maps. As small changes in
the motor commands can produce large effects in the
sensory domains, the mappings consider delta changes
in the actions (for the motor spaces) and in the sensory
domains (for the visual modality). The consideration of
delta actions calls for a small generalization of GB to
interleave absolute and local goals generation that we
call Context Based Babbling, Event-Based Learning
update of the different function-mappings that is acti-
vated whenever a sensory point moves and driven by
active strategies (GB with progress monitoring). In the
case of bimanual affordances, we added a reactive reflex
guidance to attract the arms to the object, presented in
Behavior-Based Babbling algorithm which performs a
sensory-based learning and uses pre-learned SM maps
to query the motor actions to be performed.

From the mappings we have extracted the so-called
AGs, SM structures that can be queried in a forward or
inverse way. We have observed that AGs are a good
compression into usable forward and inverse prediction
structures and can be smaller than the high number
experiences stored in a SM mapping. We compute AGs
for two cases: a completely unconstrained approach/
navigation which can freely access any point of inci-
dence of the object and another constrained body–
object interaction in which arms and the fixed torso
position limit the available affordances. For the former
case, we have presented results with the mobile Epuck
robot, which learns and exploits AGs (e.g. by an uncon-
strained version of the peg-in-hole problem presented in
Sánchez-Fibla et al., 2011).

Solving the bimanual peg-in-hole task (in a custom
simulation setup with self-collisions; see Note 1), we

have faced the difficulty of the mutual interference of
the different arms during learning. We reduced the
problem to an SM learning task in which we departed
from a reactive behavior where both arms maintain
contact when haptically activated (we call this learning
guidance Behavior-Based Babbling). This way, GB on
the target direction and angle of the manipulated
object, we have been able to solve the peg-in-hole task
in this restricted set of cases. The ‘‘pull toward’’ affor-
dance is discovered in this way. Clearly, the joint model
of two arms has more affordances than the separate
arm’s models (a particularly placed distant object can
only be approached toward the agent using both arms).
But at the same time, two arms when linked by being
(and forcing to be) in contact with a common object
restrict their DOFs by the linked system that they form.

To conclude and from a developmental perspective,
several questions have been raised that we may have
started to answer. Does the brain need to maintain dif-
ferent absolute and delta mappings? Could the separate
learning of the SM and sensory maps be the clue to
how we make sense of the sensory covariations given
that newborn start interacting with synchronized
bimanual movements as Corbetta and Thelen (1996)
suggest? Could newborn attraction to biological motion,
as found by Simion et al. (2008), be a consequence of
sensory co-variation maps at work? Could sensory maps
be the main mechanism behind transfer learning from bi-
to unimanual interactions? And what about motor
equivalence? How much of the separated learned arm
models is transferred to the joint arms model? Could a
dominant arm effect emerge naturally from a computa-
tional learning process like the one we describe?
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Note

1. The simulation environment (made with pyBox2D phy-
sics library), python notebooks to generate all results and
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videos will be available at https://github.com/santmarti/
2019-BimanualLearning-AB. The implementation depends
on Explauto library https://github.com/flowersteam/
explauto, for which a special learning with context has
been implemented for this paper: see notebook
learning_with_sensorimotor_context.ipynb.
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Escobar-Juárez, E., Schillaci, G., Hermosillo-Valadez, J., &
Lara-Guzmán, B. (2016). A self-organized internal models

architecture for coding sensory–motor schemes. Frontiers
in Robotics and AI, 3, Article 22.

Forestier, S., & Oudeyer, P. Y. (2016a). Curiosity-driven

development of tool use precursors: A computational
model. In A. Papafragou, D. Grodner, D. Mirman, & J. C.
Trueswell (Eds.), 38th Annual Conference of the Cognitive

Science Society (CogSci 2016), Philadelphie, PA, United
States, August 2016 (pp.1859–1864).

Forestier, S., & Oudeyer, P. Y. (2016b). Modular active

curiosity-driven discovery of tool use. In Intelligent Robots

and Systems (IROS), 2016 IEEE/RSJ International Con-

ference on IEEE (pp. 3965–3972). Daejeon, South Korea:

IEEE.
Gibson, J. (1986). The ecological approach to visual perception.

Mahwah, NJ: Lawrence Erlbaum.
Hoff, B., & Arbib, M. A. (1993). Models of trajectory forma-

tion and temporal interaction of reach and grasp. Journal
of Motor Behavior, 25, 175–192.

Hosoda, K., & Asada, M. (1994). Versatile visual servoing
without knowledge of true jacobian. In Intelligent Robots

and Systems’ 94. ‘‘Advanced Robotic Systems and the Real

World,’’ IROS’94. Proceedings of the IEEE/RSJ/GI Inter-

national Conference on IEEE (Vol. 1, pp. 186–193).
Munich, Germany: IEEE.

Kawai, Y., Park, J., Horii, T., Oshima, Y., Tanaka, K., Mori,
H., & . . . Asada, M. (2013). Throwing skill optimization

through synchronization and desynchronization of degree
of freedom. In X. Chen, P. Stone, L. E. Sucar, & T. van

der Zant (Eds.), RoboCup 2012: Robot Soccer World Cup

XVI (pp. 178–189). Berlin, Germany: Springer.
Kemp, C. C., & Edsinger, A. (2006). What can I control?: The

development of visual categories for a robots body and the

world that it influences. In IEEE International Conference on

Development and Learning (ICDL), Special Session on Auton-

omous Mental Development. Bloomington, IN, USA: IEEE.
Kulkarni, T. D., Narasimhan, K., Saeedi, A., & Tenenbaum,

J. (2016). Hierarchical deep reinforcement learning: Inte-
grating temporal abstraction and intrinsic motivation. In

Advances in neural information processing systems (pp.
3675–3683). Barcelona, Spain: Neural Information Pro-
cessing Systems Foundation, Inc.

Lake, B. M., Ullman, T. D., Tenenbaum, J. B., & Gershman,
S. J. (2017). Building machines that learn and think like
people. Behavioral and Brain Sciences, 40, 1–72.

Lowe, D. G. (1999). Object recognition from local scale-

invariant features. In Computer Vision, 1999. The Proceed-

ings of the Seventh IEEE International Conference on IEEE

(Vol. 2, pp. 1150–1157). Kerkyra, Greece: IEEE.
Maffei, G., Herreros, I., Sanchez-Fibla, M., Friston, K. J., &

Verschure, P. F. (2017). The perceptual shaping of antici-
patory actions. Proceedings of the Royal Society B,

284(1869). doi:10.1098/rspb.2017.1780
Mannella, F., Santucci, V. G., Somogyi, E., Jacquey, L., O’Regan,

K., & Baldassarre, G. (2018). Know your body through intrin-

sic goals. Frontiers in Neurorobotics 12, Article 30.
Moulin-Frier, C., & Oudeyer, P. Y. (2013). Exploration stra-

tegies in developmental robotics: A unified probabilistic
framework. In Development and Learning and Epigenetic

Robotics (ICDL), 2013 IEEE Third Joint International

Conference on IEEE (pp. 1–6). Osaka, Japan: IEEE.

14 Adaptive Behavior



Moulin-Frier, C., Rouanet, P., & Oudeyer, P. Y. (2014).
Explauto: An open-source Python library to study autono-

mous exploration in developmental robotics. In ICDL-

Epirob-International Conference on Development and

Learning, Epirob. Genoa, Italy: IEEE.
Moulin-Frier, C., Sanchez-Fibla, M., & Verschure, P. F.

(2015). Autonomous development of turn-taking behaviors

in agent populations: A computational study. In Interna-

tional Conference on Development and Learning, ICDL/

Epirob, Providence, RI. Providence, USA: IEEE.
O’Regan, J. K., & Noë, A. (2001). A sensorimotor account of

vision and visual consciousness. Behavioral and Brain

Sciences, 24, 939–973.
Oudeyer, P. Y., Kaplan, F., & Hafner, V. (2007). Intrinsic

motivation systems for autonomous mental development.
IEEE Transactions on Evolutionary Computation, 11,
265–286.

Puigbo, J. Y., Moulin-Frier, C., Vouloutsi, V., Sanchez-Fibla,
M., Herreros, I., & Verschure, P. F. (2015). Skill refine-
ment through cerebellar learning and human haptic feed-
back: An icub learning to paint experiment. In: Humanoid

Robots (Humanoids), 2015 IEEE-RAS 15th International

Conference on IEEE (pp. 447–452). Seoul, South Korea:
IEEE.

Rolf, M., & Asada, M. (2014). Autonomous development of
goals: From generic rewards to goal and self detection. In
Development and Learning and Epigenetic Robotics (ICDL-

Epirob), 2014 Joint IEEE International Conferences on

IEEE (pp. 187–194). Genoa, Italy: IEEE.
Rolf, M., Steil, J. J., & Gienger, M. (2010). Goal babbling

permits direct learning of inverse kinematics. IEEE Trans-

actions on Autonomous Mental Development, 2, 216–229.
Sánchez-Fibla, M., Duff, A., & Verschure, P. F. (2011). The

acquisition of intentionally indexed and object centered
affordance gradients: A biomimetic controller and mobile
robotics benchmark. In Intelligent Robots and Systems

(IROS), 2011 IEEE/RSJ International Conference on

IEEE (pp. 1115–1121), San Francisco.
Sanchez-Fibla, M., Duff, A., & Verschure, P. F. (2013). A

sensorimotor account of visual and tactile integration for
object categorization and grasping. In Robotics and Auto-

mation (ICRA), 2013 IEEE International Conference on

IEEE (pp. 107–112). Karlsruhe, Germany: IEEE.
Sánchez-Fibla, M., Moulin-Frier, C., Arsiwalla, X., &

Verschure, P. (2017). A correlational analysis of multia-
gent sensorimotor interactions: Clustering autonomous
and controllable entities. Retrieved from https://arxiv.org/
abs/1711.08333

Schmidhuber, J. (1991). A possibility for implementing curios-
ity and boredom in model-building neural controllers. In J.

A. Meyer, & S. W. Wilson (Eds.), Proceedings of SAB’91

(pp. 222–227). Paris, France: MIT Press.
Schmidhuber, J. (2010). Formal theory of creativity, fun, and

intrinsic motivation (1990–2010). IEEE Transactions on

Autonomous Mental Development, 2, 230–247.
Simion, F., Regolin, L., & Bulf, H. (2008). A predisposition

for biological motion in the newborn baby. Proceedings of

the National Academy of Sciences, 105, 809–813.
Sporns, O., & Edelman, G. M. (1993). Solving Bernstein’s

problem: A proposal for the development of coordinated

movement by selection. Child Development, 64, 960–981.
Takiyama, K., & Sakai, Y. (2016). Balanced motor primitive

can explain generalization of motor learning effects

between unimanual and bimanual movements. Scientific

Reports, 6, Article 23331.
Thill, S., Caligiore, D., Borghi, A. M., Ziemke, T., & Baldas-

sarre, G. (2013). Theories and computational models of

affordance and mirror systems: An integrative review.

Neuroscience & Biobehavioral Reviews, 37, 491–521.
Thrun, S. (1995). Exploration in active learning. In M. Arbib

(Ed.), The handbook of brain science and neural networks

(pp. 381–384). Retrieved from https://pdfs.semanticscho-

lar.org/5014/f255f686913e21fd01cc53bf39d8db20ee1e.pdf
Ugur, E., Nagai, Y., Sahin, E., & Oztop, E. (2015). Staged

development of robot skills: Behavior formation, affor-

dance learning and imitation with motionese. IEEE Trans-

actions on Autonomous Mental Development, 7, 119–139.

doi:10.1109/TAMD.2015.2426192
Verschure, P. F., Pennartz, C. M., & Pezzulo, G. (2014). The

why, what, where, when and how of goal-directed choice:

Neuronal and computational principles. Philosophical

Transactions of the Royal Society B: Biological Sciences,

369(1655), 20130483.
Verschure, P. F., Voegtlin, T., & Douglas, R. J. (2003). Envir-

onmentally mediated synergy between perception and

behaviour in mobile robots. Nature, 425, 620–624.
Yokoi, A., Hirashima, M., & Nozaki, D. (2011). Gain field

encoding of the kinematics of both arms in the internal

model enables flexible bimanual action. Journal of Neu-

roscience, 31, 17058–17068.
Yokoi, A., Hirashima, M., & Nozaki, D. (2014). Lateralized

sensitivity of motor memories to the kinematics of the

opposite arm reveals functional specialization during

bimanual actions. Journal of Neuroscience, 34, 9141–9151.
Zech, P., Haller, S., Lakani, S. R., Ridge, B., Ugur, E., & Pia-

ter, J. (2017). Computational models of affordance in

robotics: A taxonomy and systematic classification. Adap-

tive Behavior, 25, 235–271.

Sánchez-Fibla et al. 15



About the Authors

Martı́ Sánchez-Fibla is currently leading Plan Nacional INSOCO DPI2016-80116-P and working
on studying emergent behaviors among learning agents. Martı́ is professor and coordinator of UPF
master Cognitive Sciences and Interactive Media (CSIM) affiliated to the Artificial Intelligence and
Machine Learning group of University Pompeu Fabra (UPF), collaborating with SPECS (IBEC)
and Complex System (UPF) Labs. Martı́ is a computer scientist and did his PhD thesis in combina-
torial optimization in the Artificial Intelligence Institute (IIIA, CSIC).
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