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Abstract—We provide a computational model showing how
turn-taking behaviors can self-organize out of sensorimotor in-
teractions between vocalizing agents. Recent hypotheses propose
that turn-taking behaviors in certain primate species emerge
from a need to maintain vocal contact in a group (e.g. in
dense environments preventing visual contact). In this context,
vocalizations can convey information about the presence of each
group member and taking turns allow to minimize the vocal
signal interferences. We consider agents equipped with a cognitive
architecture based on two coupled control loops: a reactive one
implementing a basic regulatory behavior to maintain vocal
listening and an adaptive one learning an action policy to
maximize vocal contact among group members. We show that
the reactive process bootstraps the adaptive learning to converge
toward a collective turn-taking strategy. This model provides a
computational support to the hypothesis that turn-taking can
emerge from functional constraints related to group cohesion
and inter-individual vocal signal interferences. We suggest future
directions of research to understand how social behaviors can
result from sensorimotor interactions.

I. INTRODUCTION

A fundamental characteristic of human communication is
the ability to take turns during vocal exchanges, resulting in a
minimal overlap in time of their vocalizations [1]. A particular
advantage of this so-called turn-taking behavior is that it pre-
vents signal interferences to allow the communication content
to be properly decoded by the message receiver.

It has been recently shown that this rather complex social
behavior is not human-specific but is shared with another
primate species, the common marmoset monkeys (Callithrix
jacchus), which also exhibits cooperative vocal communi-
cation by taking turns [2]. This suggests that rather basic
cognitive abilities could be sufficient to manage this collective
behavior. A simple neural model has been proposed which
is indeed able to reproduce some statistical properties of the
observed behavior in marmosets [3] and which suggests a
crucial role of self-monitoring in this process [4] (both papers
[3] and [4] have been published at ICDL/Epirob).

From our analysis, these studies reveal the existence of
both a reactive and an adaptive action-perception loops in
turn-taking behaviors. First, the analysis of time interval
distributions in marmoset vocal exchanges shows that the
new-born marmoset vocalizations are not timed independently
for each individual but instead according to the perception
of both self and other’s calls (but without distinguishing

between both, see below) [4]. We interpret this result as
evidence that a reflexive behavior, influenced both by self and
other vocalizations, plays a role in vocal interaction. Second,
the distribution of time intervals between infant marmoset
vocalizations in response to their own call vs in response to
other’s call are similar, showing that infant marmoset does
not distinguish between self vs other calls, i.e. they do not
self-monitor. Third, it has been shown that these time interval
distributions (self vs other responses) are different in adult
marmosets, indicating that, contrarily to the infants, adults
possess self-monitoring abilities allowing the distinction of
self vs other’s vocalizations. The fact that the time interval
distributions are different for infants and adults shows that self-
monitoring is acquired during infant development, therefore
involving a learned adaptive component to control the timing
of vocalizations with respect to other individuals (this will be
one of the central aspects of the model presented in this paper).

Previous models of turn-taking behavior in agent popu-
lations have been published. On one hand, the authors of
the aforementioned studies propose a model focusing on
the minimal neural architecture allowing the reproduction
of some statistical properties observed in animal behavior
[3], [4]. They show that turn-taking can result from coupled
neural architectures which are rather minimal (three nodes)
and act as coupled oscillators. A more elaborated model
[5], though not confronted to animal behavior data, uses a
genetic algorithm to optimize the neural model parameters
of simulated mobile robots where the fitness function relies
on how the robots are able remain within a short distance
of one another as long as possible, using noisy continuous
acoustic interaction. However, these studies do not address
computationally how the model parameters can be learned
from agent interactions, whereas primate behavior data shows
that turn-taking is acquired during infancy (although whether
this acquisition is due to biological or cognitive mechanisms
remains an open question). On the other hand, other models
address the learning issue by using reinforcement learning
methods to maximize a certain reward. This reward can be
directly related to the intrinsic properties of successful turn-
taking, i.e. the minimization of overlap and silence durations
[6], or to higher level discourse properties, e.g. the importance
of the delivered messages [7]. However, those latter studies
consider that turn-taking behaviors emerge once a linguistic
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system is already in place, whereas the aforementioned primate
behavior data strongly suggests that turn-taking behaviors have
much earlier evolutionary bases.

This paper attempts at providing a computational model
addressing the following questions. (1) What is the role of
reactive vs adaptive control loops in turn-taking behavior? (2)
How does learning occur from agent interaction and under
what functional constraints? This model is not in divergence of
previous ones but is rather taking a different perspective, both
to reframe the problem at the functional cognitive level and to
address computationally the learning issue. Regarding question
(1), we adopt the Distributed Adaptive Control framework
(DAC, [8], [9]). DAC proposes that cognition is organized in a
number of hierarchical layers of increasing complexities: from
reactive (reflex behavior pre-wired from evolution), to adaptive
(involving prediction through sensorimotor association learn-
ing), to contextual (involving planning and memory). The
reactive layer implements a set of homeostatic and allostatic
controllers aiming at providing reflex motor responses to
incoming stimuli in order to maintain the organism within a
comfort zone (related e.g. to feeding, breathing, safety etc. . . ).
The adaptive layer develops on top of the reactive one to
acquire a state space of the agent-environment interaction and
to shape action through learning mechanisms, allowing e.g.
the anticipation of action to improve the reactive control.
The contextual aspects that relate to the turn-taking and
thus the contextual layer of DAC are outside the scope of
this paper. Regarding question (2), we propose a multi-agent
simulation paradigm inspired by the so called language games
[10], [11], [12], where a global communication strategy self-
organizes out of local interaction between sensorimotor agents
through incremental and coupled learning mechanisms. To our
knowledge, this is the first time that this paradigm is applied
to the modeling of turn-taking behaviors.

In the following Section II, we state our working hypotheses
about the functional constraints driving turn-taking behavior
emergence from an evolutionary perspective. Then, in Sec-
tion III, we describe a novel computational model imple-
menting a population of sensorimotor agents equipped both
with a reactive and an adaptive control loops and interacting
together through vocal production and mutual perception.
Section IV analyses simulation results to show how turn-taking
behaviors self-organize out of agent vocal interactions under
the functional constraints proposed in Section II. Finally, we
conclude this study by addressing the two questions asked
above with respect to the model results, proposing further
extensions of the model to overcome its current limitations
as well as applying it to more complex setups.

II. FUNCTIONAL CONSTRAINTS DRIVING TURN-TAKING
BEHAVIOR EMERGENCE

Taking inspiration from [2], we make the hypothesis that
turn-taking behaviors emerge in agent populations needing to
maintain group cohesion for a survival purpose (e.g. because
they are not adapted to survive in isolation) and living in
a dense environment preventing visual contact, e.g. a dense

forest. In this context, a way to maintain group cohesion is
through the use of vocalizations to convey information about
the presence of each member. We make the assumption that
each individual uses vocal identification to ensure that each
other member of the group is around. This rather strong
hypothesis, which requires that each agent is able to identify a
conspecific from the acoustic properties of its calls, is plausible
for several social species (see e.g. [13] for the case of adult
marmosets). However, such identification abilities can hardly
be conceived as pre-wired from infancy and have instead to
be tuned during development from inter-agent visual and vocal
interactions.

Visual and auditory channels display strong differences in
their ability to convey information. In particular, vision is
less subject to interferences: whereas one can easily identify
individuals from the image of a group, it is generally harder to
perform the same task from a mixed acoustic signal merging
each individual voice. This is due to stronger interferences
between individual signals in the latter case. Therefore, if
several group members are vocalizing at the same time, the
vocalization sounds will interfere making agent identification
harder (i.e. to answer the question: who vocalized?).

We predict that these constraints, vocal group cohesion
through vocal identification on the one hand and minimal
interferences between calls on the other hand, are sufficient to
allow turn-taking behaviors to emerge in an agent population.
The model described in the following section attempts at
providing a computational support to this prediction.

III. MODEL

A. General architecture

We consider a population of N vocalizing agents. Each
agent aj of the population (j ∈ {1, . . . , N}) implements
the cognitive architecture described on Figure 1. The source
code related to this model is available open-source at https:
//github.com/clement-moulin-frier/turntaking model.

The global simulation loop is the following. At each time
step t (time is discrete in the current version of the model),
the output value of each agent’s motor system indicates if it is
vocalizing or not. These vocalizations, possibly overlapping,
are in turn received as input by their auditory systems. Each
agent receives the exact same input, i.e. we do not consider
signal transformations induced by the environmental signal
transmission. The auditory system decomposes the signal into
two features which are selectively processed in both layers to
drive each agent next action at time t+ 1.

B. Reactive layer

In this section we consider the reactive layer of Figure 1
in isolation. This layer is responsible for agent low-level
sensorimotor processing and control and is supposed to be pre-
wired (typically from evolutionary processes in a biological
perspective). The auditory input at each time step drives a
reflex controller which aims at maintaining the agent in a
comfort zone with respect to its assumed need to listen to
vocalizations of the group members.
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Fig. 1. The agent cognitive architecture is composed of a reactive and an
adaptive layers. The auditory system decomposes the sound signals produced
by the agents in two features (which can be related to the pitch and the
amplitude of the sound signal). The first one indicates whether at least one
agent vocalized at time t. It can be conceived as the amplitude of the signal.
The second one conveys information about the agent’s identity (it could be the
pitch of the signal for example, but our model is agnostic in this respect). The
control flow is then distributed in both layers. The reactive layer implements a
simple reflex controller activating the motor system whenever no vocalization
has been heard since a few time steps (described in Section III-B). The
adaptive layer relies on agent identification, an ability supposed to be acquired
later in the agent development, to maintain an estimation that each member of
the population is present. The action selection system learns how to modulate
the motor system to maximize the overall group presence estimation through
value estimation (described in Section III-C). The motor system sums up
the output from both layers, triggering vocalization or not according to the
obtained value.

An auditory input can either be self-generated, produced
by a single agent or the result of overlapping vocalizations
produced by several agents at the same time. The reflex
controller is driven by the time T since the agent has heard the
last vocalization. Its comfort zone is defined with respect to
a threshold θt below which the agent remains silent (T < θt,
with θ = 4 in all the simulations we will present). Whenever
the threshold is reached, i.e. T ≥ θt, the agent is out of its
comfort zone and activates its motor system, aiming at return-
ing to a comfortable state. The motor output is considered to
be probabilistic. It receives an activation value a ∈ R from the
reflex controller and converts it into a probability of vocalizing
p ∈ [0, 1] through a sigmoid activation function

p(a) =
1 + tanh(a)

2
. (1)

The reactive layer is limited to provide two possibles motor
activation values:
• Whenever the agent goes out of the comfort zone (T ≥
θt), the regulatory mechanism of the reflex controller out-
puts a motor activation a = 0, resulting in a probability
of vocalizing p(0) = 0.5.

• Whenever the agent is in the comfort zone (T < θt), the
reflex controller outputs a strong motor inhibition a =
−30, resulting in a quasi-null probability of vocalizing
p(−30) = ε.

Figure 2 displays a simulation with two interacting agents
embedding the reactive layer (the adaptive one being deacti-
vated). Each time the agents go out of the comfort zone, i.e.
each time none of them vocalized during the θt last time steps,
they produce a vocalization with probability 0.5. If at least one
of them vocalizes, both return to the comfort zone and stay

Fig. 2. The reactive layer allows to maintain basic vocal contact but
often results in overlapping vocalizations. Here a population of two agents
is considered. Top: probability of vocalizing induced by the output motor
activation from the reflex controller through Equation 1. This probability is
either null if at least one agent vocalized in the θt = 4 last time steps
and 0.5 otherwise. Because the reflex controller of each agent has the same
dynamics and both agents receive exactly the same auditory input, their motor
activations are exactly the same (hence only one is visible in the plot). Bottom:
vocalizations produced by each agent. The y-axis corresponds to the auditory
feature allowing to distinguish each agent, which is used here only for the
sake of visualization in order to display which agent is vocalizing at each
time step (low value: Agent 1; high value: Agent 2).

silent for at least the θt subsequent time steps. These basic
reactive interactions provide the agents with a primitive level
of entrainment where each one acts on the behavior of the
other through the mutual auditory perceptions driving their
respective reflex controllers. However, we observe that this
reactive behavior does not prevent overlapping between the
agent vocalizations. The next section describes the processes
occurring in the adaptive layer which will allow the agent to
converge to a collective turn-taking strategy.

C. Adaptive layer

In this section, we present the control flow of the adaptive
layer, which operates on top of the reactive one. The adaptive
layer takes as input the extracted features from the auditory
signal which allow agent identification and outputs a motor
response that is summed up with the output of the reactive
layer (see Figure 1). Therefore, the activation provided to the
motor system is a = aR + aA, where aR and aA are the
motor activations provided by the reactive and the adaptive
layers, respectively. This activation is then converted into a
probability of vocalizing using the activation function defined
in Equation 1.

The adaptive layer is then composed of a number of
functional subsystems that we describe below, together with
the mechanisms allowing to learn an adaptive action policy to
maximize vocal contact.

1) Agent identification: The agent identification system
makes use of a certain feature extracted from the auditory
signal allowing the agents to identify each other. Our model
is agnostic about the nature of this feature: it could be for
example the pitch of the vocal signals or any other feature
allowing to properly distinguish agent vocalizations. Here we
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simply consider that each population member vocalizes on a
certain range allowing the others to identify it from its specific
call. This identification ability is supposed to be mature later in
the agent development and learned from visuo-auditory inter-
agent interactions during infancy. However we do not model
this particular learning dynamics here. We rather consider that
before being able to identify others, agents behave as described
in the previous section, i.e. are only driven by the reactive
layer (Figure 2). Then, once agent identification is acquired, it
allows the adaptive layer to modulate the activity of the motor
system (see Figure 3).

Computationally, a vocalization can be perceived as belong-
ing to a particular agent aj if and only if it has been produced
in isolation, i.e. if it does not overlap with the vocalization
of another agent at the same time step. This reflects the fact
that due to interferences in the sound signals, overlapping
vocalizations impair agent identification (see Section II). Thus,
if only one agent was vocalizing at time t, the output of
the agent identification system is a discrete value encoding
the agent identity aj . If no agent vocalized or if several of
them did, it does not output any value. Note that an agent can
identify its own vocalization as being produced by itself.

2) Presence estimation: The output of the agent identifica-
tion system is used to estimate the presence of each member of
the population. Each agent maintains a set of presence values
{pj(t)}j∈{1,...,N} which can be considered as the estimated
probabilities that each member is present. Note that this set
does not reflect a probability distribution, the N values not
necessarily summing up to 1: in the two extreme cases all
agents are estimated as surely present (all pj equal 1) or surely
absent (all pj equal 0).

The presence value of each agent, including the one of itself,
decrease exponentially following the dynamics:

pj(t+ 1) = 0.9pj(t).

Whenever a particular agent aj is identified at time t (see
agent identification above), the presence is increased by:

pj(t+ 1) = pj(t) + 0.3,

and then stays at the same value pj(t + 1) during the 8
subsequent time steps. Moreover these presence estimation
values are programmatically bounded between 0 and 1.

Thus, the presence probability decreases at each time step
in an exponential way when no identification is performed
and is increased by a constant value whenever an agent
is properly identified. In this latter case, the corresponding
presence estimation starts to decrease again only after 8 time
steps.

3) Action selection: Action selection uses the current pres-
ence estimation values {pj(t)} to infer a motor activation.
This involves a parametrized motor policy which is learned
according to each agent experience.

The action policy is modeled as a linear combination of
the presence estimation vector {pj(t)}j∈{1,...,N}. By noting
wA(t) = [w0(t), w1(t), . . . , wN (t)] the weights of the linear

combination at time t, the activation sent to the motor system
is given by:

aA(t) = wA(t)[1, p1(t), . . . , pN (t)]T

=

N∑
i=0

wi(t)pi(t), (2)

where p0(t) = 1 and w0(t) is the value of x when all the pj
are null.

The output value aA(t) will be summed with the output
from the reactive layer in the motor system to modulate the
motor activation from the estimated agent presences (a =
aR+aA in Equation 1, where aR is the motor activation from
the reactive layer). How the weights are learned is explained
below.

4) Value estimation and learning: The weights wA(t) pa-
rameterizing the action selection system are adaptively learned
by each agent. At each time step, the agent estimates how well
its last action contributed to the overall group presence, i.e.
to the probability that each member of the group is present.
The action policy parameters are iteratively adapted through a
learning rule to maximize the cumulative overall presence.

Computationally, we use a classical actor-critic method
widely use in reinforcement learning (see e.g. [14]). In this
context, the action selection system corresponds to the actor
(parametrized by wA(t)) and the value estimation system
corresponds to the critic (evaluating the actor performance and
updating the policy parameters in the direction of performance
improvement). For this aim, the critic approximates a value
function mapping the input of the actor (i.e. the presence
activation vector [p0(t), . . . , pN (t)], analog to the state in the
classical reinforcement learning terminology) to the expected
discounted sum of rewards of applying the policy from that
state.

The reward at each time step corresponds to the overall
group presence and is defined by:

r(t) =

N∏
i=1

pi(t). (3)

It can be viewed as the estimated probability that all agents
of the population are present.

Function approximation is performed analogously to the
action selection system, i.e. using a linear combination:

v(t) = wV (t)[1, p1(t), . . . , pN (t)]T ,

where wV (t) are the weights of the linear combination and
v(t) is the expected value of applying the policy from the
current state [p1(t), . . . , pN (t)].

This value function and the reward at time t are then used
to compute a temporal-difference error e(t):

e(t) = r(t) + γv(t)− v(t− 1),

where γ is a discount factor that is set to 0.9.
The temporal-difference error e(t) indicates if the policy

has performed better (e(t) > 0) or worse (e(t) < 0) than
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expected given the last observed reward r(t). It is used as
a learning signal to update both the value function and the
policy (respectively parametrized by wV (t) and wA(t)) using
the following formulas:

wV (t+ 1) = wV (t) + lr(t)e(t)p̃(t− 1) (4)
wA(t+ 1) = wA(t) + lr(t)e(t)m(t− 1)p̃(t− 1), (5)

where lr(t) is a decreasing learning rate given by lr(t) =
0.1 ∗ t−0.1, m(t− 1) indicates whether the agent vocalized at
that time step (m(t − 1) = 1) or not (m(t − 1) = −1), and
p̃(t− 1) is a short notation for [1, p1(t− 1), . . . , pN (t− 1)].

IV. RESULTS

In Section III-B we have shown the basic behavior resulting
from agents equipped with only the reactive layer (Figure 2).
In the current section we thus limit our analysis to the behav-
ior resulting from agents equipped with the entire cognitive
architecture of Figure 1.

A. Adaptive behavior

Figure 3 displays the result of a 2-agent population equipped
with the full cognitive architecture of Figure 1 (both the
reactive and the adaptive layers are activated). At the beginning
of their interaction (time steps 0 to 100, left column), their
behavior is similar to when using the reactive layer alone
(Figure 2). This is because the initialization of the action se-
lection system parameters wA(0) are initially sampled around
0. However, we observe that the learning process at work
in the adaptive layer has an effect quite early as indicated
by the diverging motor activations of both agents (remember
that the reactive layer alone always result in the same motor
activation for both agents as shown in Figure 2). Due to the
motor term m(t − 1) of the action policy learning rule in
Equation 5, which can differ between both agents according
to the probabilistic nature of the motor system, each agent
converges towards different action policies. We observe that
this allows the overall presence probability to continuously
increase during agent interactions (bottom panel spanning the
three columns). From time step 1000 to time step 1100 (middle
column), we observe that their motor activations are diverging:
when one vocalizes the other often remains silent and vice-
versa (second row). From time step 10000 to time step 10100
(right column), we observe that they have converged to a near-
optimal policy, resulting in a turn-taking behavior with no
overlapping. Note that the overall group presence estimation
in the bottom panel cannot reach the value 1 due to the
motor inhibition performed by the reactive layer, preventing
the agents to vocalize whenever one of them did it in the recent
past and preventing the presence estimation values to stay at
the maximal level (upper-right panel).

B. Action policy learning

To analyze this result in more detail, Figure 4 shows the
evolution of the acquired action policy by the two agents
during the same simulation as in Figure 3. These action
policies correspond to the linear combination weights of the

Fig. 4. Adaptive agents converge to opposite action policies. Data from
the same simulation as in Figure 3. Each of the six subplots represents the
policy learned by the two agents (top row: Agent 1; bottom row: Agent 2)
at three different time steps (left column: t = 0; middle column: t = 1000;
right column: t = 10000). These action policies map the estimated presence
probabilities {pj(t)}j∈{1,...,N} (noted P (a1) and P (a2) on the axes) to the
resulting probability of vocalizing (color map from white to black) provided
by Equation (2) and (1). We assume here that a = aA, i.e. that the reflex
controller does not inhibits the motor system (aR = 0, see Section III-B).
For example, at time t = 10000 (third column), Agent 1 (first row) has
converged to a policy resulting in a high probability of vocalization (black
color) whenever its own estimated presence P (a1) is lower than the one of
its partner P (a2).

action selection system which are learned by the agent (Equa-
tion 2). Remember that at each time step t, the action selection
system takes as input the estimated presence probabilities
{pj(t)}j∈{1,...,N} (noted P (a1) and P (a2)) on the figure axes)
and returns a motor activation aA(t) ∈ R through Equation 2.
This motor action is then summed with the one from the reflex
controller of the reactive layer, aR(t), and a probability of
vocalizing is obtained through the sigmoid activation function
(with a = aR+aA in Equation 1). This is the probability which
is displayed in the plots of Figure 4, which corresponds to
the cases where the reactive layer does not inhibit the motor
system (i.e. whenever aR = 0 resulting in a probability of
vocalizing of p(aA))). Note that whenever the reactive layer
inhibits the motor system (i.e. whenever T < θt, resulting in
aR = −30) the probability of vocalizing is always quasi-null,
the motor activation from the adaptive layer being unable to
compensate this inhibitory effect (that case is not shown in
Figure 4).

We observe that the incremental learning process occurring
in the adaptive layer through the value estimation allows the
agents to progressively converge towards opposite action poli-
cies: the agent with the lowest estimated presence yields a high
probability of vocalizing, whereas the one with the greatest
estimated presence yields a low probability of vocalizing. This
emerging strategy is actually optimal to maximize the overall
group presence (i.e. the reward r(t)) because it allows to
increase the lowest estimated presence each time the agents
are able to vocalize (i.e. each time the reflex controller does
not completely inhibit the motor system).

C. Model robustness

Figure 5 shows the model performances across a number of
independent simulations in 2-agent and 3-agent populations.
We observe that the populations improve the overall group
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Fig. 3. The adaptive layer allows the learning of an action policy maximizing the overall presence estimation. Two agents embedding the full cognitive
architecture of Figure 1 interact as described in Section III-A during 10000 time steps. Each one is represented by a particular color (top legend). Each
of the three columns refers to the agent states at three different time windows (100 time steps each indicated in the x-axis). First row: presence estimation
following the dynamics described in Section III-C2. The evolution of these values is the same for both agents because they receive the exact same auditory
input and implements the same deterministic agent identification process. Thus, each point color in the first-row plots corresponds to the estimate that each
agent is present, these values being computed the same way by each agent in the population. For example, around the 20th time step, both agents estimate
a low presence of Agent 1 (blue) and a high presence of Agent 2 (green). Second row: probability of vocalizing induced by the summed motor activations
from both the reactive and the adaptive layers to the motor system, through the activation function of Equation 1. Whenever only one point is visible at a
given time step, it means that both agents have the same value (this is in particular the case for the low level activations which correspond to cases where the
reflex controller strongly inhibits the motor system as described in Section III-B). Third row: vocalizations actually produced by each agent, resulting from
the motor system output (i.e. from a probabilistic choice) and expressed as the agent specific auditory feature (y-axis). Bottom row: overall group presence
estimation during the entire simulation, corresponding here to the running mean over 1000 time step of the reward computed by Equation 3. As for the
presence estimation from which it is computed, this value is the same for both agents.

presence in each situation, thus showing the robustness of
the model performances. Note that the maximal overall group
presence decreases with the number of agents in the population
(around 0.8 for two agents and around 0.5 for three agents,
according to the figure) due to the reflex controller which
prevents agents to vocalize whenever they have listen to a
vocalization in the last θt time steps. As θt is fixed, this
implies lower average presence values for populations with
more agents.

V. CONCLUSION

In this paper, we proposed a cognitive model for turn-
taking behavior emergence in vocalizing agents, where the
control flow is distributed into two layers: a reactive one based
on a simple reflex controller driven by a need to listen to
vocalizations (Section III-B) and an adaptive one allowing
action policy learning driven by the maximization of the
overall group presence (Section III-C). The reflex controller
we proposed, which is regulated through the possibility of
increasing/decreasing motor activity depending on whether
there was auditory input in the recent past, allows the agents
to display a basic level of entrainment where each one is
influenced by the vocalizations of the others. However this
behavior is clearly too simple to allow by itself the conver-
gence to a collective turn-taking strategy (as shown by the
overlapping vocalizations in the bottom panel of Figure 2).

Fig. 5. The performances of the model are robust both across simulations and
with more than two agents. Overall presence probability over 10 independent
simulations with different random seeds (light blue: individual simulations;
dark blue: mean over all the 10 simulations). Top: two-agent simulations.
Bottom: three-agent simulations. Note the different time scales on the x-
axes due to the slower convergence of the 3-agent simulations. The y-axis
corresponds to the running mean over 1000 time step of the reward computed
by Equation 3.

A reason for this is that the agents do not self-monitor, i.e.
they are unable to distinguish their own vocalizations from
those of the other group members, which is coherent with
the results of a previous model [4]. Nevertheless, we showed
that the sensorimotor data collected through this reactive
control loop allows to appropriately bootstrap the learning
process occurring at the adaptive level, in the sense that the
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agents converge robustly to a turn-taking collective strategy
maximizing the overall group presence. This is performed
through the iterative learning of an action policy by each agent,
which triggers vocalizations according to presence estimation
values. The learned action policy we observed (Figure 4) is
also coherent with the mentioned previous model in the sense
that the vocalization rate is increased by the other vocalizations
and decreased by those of oneself. Our own contribution is to
show how such a policy can be learned by each individuals
from agent interactions.

The proposed model has obvious limitations: time is con-
sidered as discrete, the reflex controller is based on a fixed
parameter θt, all agents receive the exact same auditory
input, the acquisition of the agent identification system is not
modeled and assumes that each agent is aware of the number
N of populations members. To overcome these limitations,
future works will first focus on the refinement of the reactive
layer, where the probability of vocalizing could be inversly
proportional to the amount of vocalizations perceived in the
recent past. In addition to removing the rather ad-hoc pa-
rameter θt, this should allow the model to scale up to larger
agent populations, allowing the agents to reactively slow down
their vocalization rate when more members are present to
better bootstrap the learning process at the adaptive level.
Second, we will analyze how the emergence of turn-taking
behavior is robust to environmental noise, possibly impairing
the identification process and making the presence estimation
differs among agent. A third challenge is the modeling of the
aquisition of the agent identification system through sparse
audio-visual interactions among agents, to study its possible
role in the whole developmental process.

Despite these limitations, this model still provides a first
computational basis to address the questions we asked in
the introduction: (1) What is the role of reactive vs adaptive
control loops in turn-taking behaviors? (2) How does learn-
ing occur from agent interaction and under what functional
constraints? Our tentative answer to (1) is that the reactive
control loop, which can be easily conceived as pre-wired from
evolutionary processes due to its simplicity, provides the nec-
essary sensorimotor constraints to bootstrap the autonomous
development of a more efficient strategy through learning in
the adaptive layer, in a way compatible with previous neu-
rocomputational models [15]. In biological terms, the reflex
controller could be considered as analogous to an homeostatic
loop regulating the need for vocal listening of each agent.
This particular need could be related to physiological states
(e.g. arousal, security or social cohesion). With the addition
of the adaptive layer and with the possibility of performing
agent identification, a presence value of each group member
is maintained that has similar dynamics than the reactive loop.
It could be interesting to relate this multi-loop regulation to
the physiological concept of allostasis as we see it in [16]
(a meta-regulation of homeostatic loops) and thus we foresee
a possible unifying principle for regulating the loops of both
reactive and adaptive layers.

Regarding (2), we showed how this process can occur at

the population level in a decentralized way, where the learning
processes of the agents are coupled through the mutual percep-
tion of their vocal productions. We saw how a collective turn-
taking behavior can self-organize out of basic sensorimotor
interactions, in a way similar to the language-game paradigm
previously used to model the emergence of lexical [17] or
phonological [12], [11] systems in agent populations. In the
current model each agent is driven by a need to maintain
vocal contact and we showed that the interaction of these
individual needs through mutual auditory perception allows
the convergence toward a globally efficient strategy.

Starting from these preliminary results, our more general
goal is to understand how entrainment between individuals
can emerge at various levels of sensorimotor and cognitive
interaction. For this aim, we adopt the Distributed Adaptive
Control (DAC, [8], [9]) framework, which proposes that
cognition is organized in a number of layers. In this paper,
we focused on agent interactions at the reactive and adaptive
levels. The bottom layer of DAC (in the sense of Figure 1) is
called Soma and is the interface between the Reactive layer
and the environment through exosensing (sensing of the world
through vision, audition, etc. . . ), endosensing (sensing of the
self from physiological needs) and action (motor execution).
The top layer of DAC is Contextual and is involved in memory
and planning to regulate the activity of the Adaptive layer, e.g.
to store or recall successful sequences of actions to reach more
abstract goals. We want to study how entrainment between
individuals can emerge at each level of this hierarchy from
their sensorimotor interactions under certain environmental
constraints.

In order to achieve this goal, we are now extending this
model toward a neuromorphic implementation, by identifying
the possible neural correlates of the proposed subsystems in
the brain, both from a computational (noting that the proposed
subsystems could be easily implemented in spiking neural
networks) and a structural perspectives (based on DAC which
is strongly grounded in brain theory [9]). This will allow
to propose experimental predictions to be confronted against
animal behavior data (e.g. [2]) in order to validate or invalidate
parts of the model.

Finally, this kind of modeling could also be applied to the
conception of original interactive systems for the cooperative
production of a musical performance between humans and
machines. An interesting line of research, for which we have
encouraging first results, is to use this model for rhythmical
sequence learning, where each element of the sequence is
represented by an agent which adaptively times its motor
actions with respect to those of the others (resulting in a de-
centralized implementation of former human-machine musical
synchronization systems, e.g. [18]).
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